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Abstract—The problem of detecting a transient change in
distribution of a discrete time series is investigated when there is a
constraint on the number of observed samples. Under a minimax
setting where the change time is unknown, the objective is to
design a statistical test that minimizes a measure of worst case
delay under a constraint on the average time to false alarm as
well as a constraint on the sampling rate. Leveraging the results
in the non-transient setting, it is shown that under full sampling
there exists an asymptotic threshold on the minimum duration
of a change that can be detected reliably with such false alarm
constrained tests. Next, given a transient change with duration
above this asymptotic threshold, the smallest sampling rate for
which the change can be detected as efficiently as under full
sampling is characterized asymptotically.

I. INTRODUCTION

The problem of reliable and quick detection of abrupt
temporary changes in stochastic systems finds applications in
a variety of fields as diverse as industrial quality control,
intrusion detection, on-line fault detection, and monitoring
evolution of activities in networks. In the classical quickest
change detection problem, a sequence of random variables
{Xi}i≥1, monitored sequentially, undergoes a change in dis-
tribution at some unknown point ν. It is typically assumed
that the random variables Xi are independent with a common
probability density function f0 for i < ν and with another
common density f1 for i ≥ ν. Both f0 and f1 are known to the
observer. The objective is to design a statistical test to detect
the change, if present, based on the sequence observed so far
with minimum expected delay and a controlled measure of
false alarm. In this setting, Lorden [1] formulated the problem
considering minimization a measure of worst case expected
delay under the so called average run length(ARL) constraint
that the mean time to false alarm is bounded from below by
a parameter γ. He established an asymptotic lower bound, in
the asymptote of γ, on the worst case expected delay for all
stopping times satisfying the ARL constraint and showed that
the CuSum statistic proposed earlier by Page [2] achieves this
lower bound. Moustakides [3] proved the optimality of CuSum
rule beyond the asymptotic setting considered by Lorden,
casting the problem into an optimal stopping time formulation.
Later, Lai in his seminal paper [4] extended the asymptotic
results of Lorden to the non i.i.d. setting employing a change
of measure argument.

Yet another common formulation of the change point
detection problem is to assume a prior distribution on the
change time ν and cast the problem into a Bayesian setting.
Shiryayev [5] formulated the problem in a Bayesian framework

assuming a geometric prior distribution. He showed that a
procedure based on threshold comparison of the posteriori
probability that a change has occurred is optimal in this setting.
Inspired by [4], the asymptotic optimality of this procedure
was extended to the non-i.i.d. case [6].

In many practical applications there are multiple data
streams to be monitored simultaneously and the changes are
quite rare. Moreover, there might be a cost associated with
taking observations. We refer to the observations taken from
the sequence {Xi}i≥1 as samples and the fraction of samples
taken in a sampling scheme as its sampling rate. In a series
of papers, Banerjee and Veeravalli [7], [8] formulated the
quickest change point detection within both Bayesian and
Minimax frameworks, considering an additional constraint on
the sampling rate before the change time. They show in this
setting, which they refer to as data-efficient change point
detection, that natural variations of the optimal procedures
under full sampling achieve the same minimum detection delay
under constant rate sparse sampling.

While the problem is well-studied in the non-transient
setting, much less is known when the change is transient. In
the transient setting, {Xi}i≥1 is a sequence of independent
random variables where all random variables have the same
density function f0 except for a possible subsequence of length
L starting at an unknown point ν, i.e. {Xi}ν+L−1ν , along which
the random variables have the common density f1. Inspired
by the alternative criteria proposed in [4], the problem of
quickest detection of transient changes is formulated in [9]
as minimizing the worst-case probability of missed detection
under a constraint on the false alarm rate in a given period. In
[10] and [11], the problem is formulated within the framework
of partially observed Markov decision processes under several
performance criteria. The main challenge in this setting is
to design the statistical test in such a way that it reacts to
the change before it disappears. In an attempt to address the
problem of detectability of a transient change with a given
duration, the probability of detection under Page’s test is exam-
ined in [12] through various approximations. Nevertheless, to
authors’ best knowledge, no prior work has touched upon the
fundamental guarantees on detectability of transient changes
beyond approximations and bounds on probability of detection.

In this paper, we look into the problem of quickest de-
tection of transient changes under a Minimax formulation. A
fundamental problem of interest is to determine the smallest
duration of a change detectable with an ARL constrained
sequential test. That is, given the constraint that the expected
time to false alarm be at least γ, what is the minimum duration



of a change that can be detected reliably, when γ tends to
infinity. Next, given a transient change with duration greater
than the asymptotic minimum duration specified earlier, we
seek to determine the smallest sampling rate under which a
transient change can be detected as quickly and reliably as in
the full sampling regime. We address these two questions by
leveraging known results for the non-transient setting. Similar
results are shown to be true in the Bayesian setting where
a transient change of a given length occurs randomly and
uniformly within a time frame of exponential size with respect
to the duration of the change [13].

The paper is organized as follows. In Section II, an
overview of the classical change point detection problem is
presented. Then, in Section III, we formulate the problem of
transient change point detection with a sampling constraint
followed by characterizing the fundamental asymptotic thresh-
old for detectability of a transient change and the minimum
sampling rate. Finally, in Section IV, proofs of the main results
are presented.

II. NON-TRANSIENT CHANGE DETECTION UNDER FULL
SAMPLING

Let us first review the classical change point detection
problem for an independent random process {Xi}i≥1, where
all the random variables before an unknown instant ν, so
called the change point, have the common density function f0,
while all random variables {Xi}i≥ν have the common density
function f1, that is

Xi ∼
{
f0 if 1 ≤ i < ν
f1 if ν ≤ i . (1)

The problem of interest is to detect the change point with a
possibly small detection delay and a controlled false alarming
reaction. Framing the problem as sequential hypothesis testing,
a natural approach is to consider a non-randomized stopping
time τ with respect to the observed sequence so far. In the
setting where no assumption is made on the prior distribu-
tion of the change point, Lorden [1] proposed a minimax
formulation of the problem as to minimize a measure of worst
case expected delay, while constraining expected time to false
alarm; that is minimizing

Ē[τ ]
def
= sup

ν≥1
ess supEν [(τ −ν+ 1)+|X1, X2, · · · , Xν−1], (2)

over all stopping times τ satisfying

E∞[τ ] ≥ γ, (3)

where the essential supremum is taken over the sigma algebra
σ(X1, · · · , Xν−1) and Eν [·] denotes expectation under Pν
which is the probability measure when the change occurs at
time ν. Lorden showed that for any stopping time τ satisfying
(3) and any ε > 0, as γ →∞,

Ē[τ ] ≥ sup
ν≥1

Eν [τ − ν|τ ≥ ν] ≥ (1− ε) log γ

D(f1||f0)
, (4)

where D(f1||f0)
def
= E1 log f1(Xi)

f0(Xi)
. Then, he showed that the

stopping time based on the so called CuSum statistic, defined
in the following, achieves this lower bound asymptotically.

Definition 1 The CuSum procedure is defined as

τ∗γ
def
= inf{n|max

k≤n

n∑
i=k

Zi ≥ c}, (5)

where Zi
def
= log f1(Xi)

f0(Xi)
, and c is chosen appropriately such

that E∞[τ∗] ≥ γ.

Thus,

inf{Ē[τ ]|E∞[τ ] ≥ γ} ∼ Ēτ∗γ ∼
log γ

D(f1||f0)
. (6)

Later, Lai extended this result for the non independent iden-
tically distributed setting using a natural generalization of the
CuSum rule in [4], where he introduced new performance
criteria which also provide insights on the other variations of
the problem. The main ingredient in [4] to prove (6) is the
following important observations which stands as the core of
asymptotic optimality of the CuSum rule for minimizing (2).
For any stopping time τ satisfying (3) and any ε > 0, as
γ →∞,

Pν(τ − ν > (1− ε) log γ

D(f1||f0)
|τ ≥ ν) = 1 + o(1), (7)

where the o(1) term does not depend on ν. Moreover, for the
stopping time τ∗γ defined in (5), as γ →∞,

Pν(τ∗γ − ν ≤ (1 + ε)
log γ

D(f1||f0)
|τ∗γ ≥ ν) = 1 + o(1), (8)

for all ν ≥ 1.

These observations provide fundamental insight on de-
tectability of transient changes, suggesting an asymptotic
threshold on the duration of the smallest piece of change
that can be detected reliably by a stopping random variable
satisfying (3).

III. TRANSIENT CHANGE POINT DETECTION UNDER
SPARSE SAMPLING

Suppose now that the random process {Xi}i≥1 is dis-
tributed as follows

Xi ∼
{
f0 if 1 ≤ i < ν or i ≥ ν + L
f1 if ν ≤ i < ν + L .

(9)

The sequence {Xi}i≥1 is observed sequentially according to
a sampling strategy defined as follows:

Definition 2 A Sampling Strategy with respect to a random
process {Xi}i≥1 is an ordered collection of random time
indices S = {S1, S2, · · · }, where Si corresponds to the ith
sampling time. In general, the decision as to whether take a
sample at a certain time instance or not depends on the past
samples. This means that S1 = 1 is an arbitrary time index
and, for any n ≥ 2,

Sn
def
= Φn({XSi}{i<n}), (10)

where Φn : Xn−1 → {Sn−1 + 1, Sn−1 + 2, · · · } is a decision
function at time Sn−1.



The objective is to detect the change efficiently, in a suitable
sense, with a so called decision policy Ψ which consists of
a sampling strategy S and a stopping time τ with respect to
the sampled sequence so far, that is Ψ = (S, τ). A decision
policy is evaluated with a measure of detection delay and its
sampling rate constrained on a measure of false alarm. As in
the non-transient setting, we consider the class of all decision
policies satisfying the ARL constraint.

Definition 3 (False Alarm Constraint) An ARL constrained
decision policy Ψ = (S, τ) is such that

E∞[τ ] ≥ γ. (11)

Definition 4 (Detection Delay) For a decision policy Ψ =
(S, τ), and ε > 0, the worst case minimum delay in probability
is defined as

d(Ψ, ε)
def
= inf

{
` : sup

ν≥1
Pν(τ − ν > `|τ ≥ ν) ≤ ε

}
. (12)

We will later argue that in the transient setting a measure
of worst case delay in probability is more appropriate to be
adopted compared to the measure of worst case expected delay
defined earlier in (2).

Definition 5 (Sampling Rate) For a decision policy Ψ =
(S, τ), the pre-change sampling rate is defined as

ρ(Ψ)
def
= lim sup

n→∞
En
[ |S(n)|

n

∣∣τ ≥ n], (13)

where S(n) , {i ∈ S|i ≤ n} is the set of indices correspond-
ing to samples taken up to time n.

Note that the use of “limsup” instead of “sup” is to avoid
sampling rates close to 1, when the change occurs early in the
sequence.

Definition 6 (Achievable Sampling Rate) Let {ργ}γ>0 be
an indexed family with 0 ≤ ργ ≤ 1. Sampling rates {ργ}γ>0

are achievable with respect to an indexed family of change
durations {Lγ}γ>0 , if there exists an indexed family of
decision rules {Ψγ = (Sγ , τγ)}γ>0, such that for γ large
enough,

(i) The ARL constraint E∞[τγ ] ≥ γ is satisfied,

(ii) The sampling rate satisfies ρ(Ψγ) ≤ ργ ,

(iii) The delay satisfies d(Ψγ , εγ) ≤ Lγ for some indexed
family {εγ}γ>0 such that lim

γ→∞
εγ = 0.

Notational Convention

When clear from the context, we represent an indexed
family with its representative element, e.g., we denote {ργ}γ>0

simply as ργ . Moreover, we will use dγ instead of d(Ψγ , εγ),
leaving out any explicit reference to the decision policy Ψγ

and to the indexed family {εγ}γ>0 which we assume satisfies
lim
γ→∞

εγ = 0, unless it is necessary to make the sampling

strategy or the stopping time explicit. Finally, let Ψ∗γ denote

the CuSum decision policy with the stopping time τ∗γ defined
in (5) and full sampling strategy.

Theorem 1 (Transient Change under Full Sampling)
(i) Let α > 1 and suppose Lγ ≥ α log γ

D(F1||F0)
. Then ργ = 1 is

achievable with respect to Lγ . Moreover, we have

d(Ψ∗γ) ∼ log γ

D(f1||f0)
. (14)

(ii) Let 0 ≤ α < 1 and suppose that Lγ ≤ α log γ
D(f1||f0) . Then

ργ = 1 is not achievable with respect to Lγ . Moreover, in this
case, for any decision policy Ψγ satisfying the false alarm and
the sampling rate constraints in Definition 6, we have

lim inf
γ→∞

dγ
γ1−α

≥ 1. (15)

Theorem 1 establishes an asymptotic threshold on the min-
imum duration of a change that can be detected reliably.
Specifically, for γ large enough, if the duration of the change
is above log γ

D(f1||f0) , the minimum delay is as short as if the
change had infinite duration. Henceforth we call such transient
changes asymptotically detectable. For transient changes with
duration below this threshold, delay grows as a polynomial
function of γ, whenever the false alarm constraint E∞[τγ ] ≥ γ
is satisfied. The lower bound on the asymptotic worst case
delay in probability in (15) can be converted to a lower bound
on the worst case expected delay defined in (2). Note, however,
that the guarantee provided on the asymptotic worst case delay
in (14) cannot necessarily be translated to a guarantee on the
worst case expected delay. This is because when the event
{τ∗γ > ν + Lγ} occurs, although happening with a vanishing
probability, the delay can be arbitrarily large, as the rest of
the observations are f0 distributed, which leads the expected
delay to grow unbounded.

The following two theorems characterize the minimum
achievable sampling rates with respect to duration of detectable
transient changes. Theorem 3 is proved using the so called
DE-CuSum decision policy proposed in [8], which was used
to achieve any constant sampling rate and asymptotically the
same worst case expected delay as under full sampling in a
non-transient scenario. A brief description of the DE-CuSum
rule is provided in the next section right before proof of
Theorem 3. For a more details on the description of this
algorithm we refer the reader to [8].

Theorem 2 (Minimum Asymptotic Achievable Rate [8])
Let α > 1 and suppose that Lγ ≥ α log γ

D(f1||f0) . Then
ργ = ω( 1

log γ ) is achievable with respect to Lγ .1 Moreover,
for the DE-CuSum decision policy, we have

d(Ψ̂γ) ∼ log γ

D(f1||f0)
. (16)

Theorem 2 amounts to a slight tightening of the analysis of the
De-CUSUM rule in [8]. Note that in the authors [8] were only
interested in constant sampling rates while in the present case,
the step size of the DE-CuSum procedure in the idle regime is

1We use here the Landau Big O notation, for instance, f(γ) = ω(g(γ)) if
g(γ)/f(γ) → 0.



not a constant but a function of γ, with the same asymptotic
growth rate as ργ .

In the following theorem, we assume that the indexed
family Lγ corresponds to durations of some asymptotically
detectable changes and show that sampling rates ργ = o( 1

log γ )
are not achievable.

Theorem 3 (Converse) Let α > 1 and suppose that Lγ ≥
α log γ
D(f1||f0) . Consider sampling rates ργ = o( 1

Lγ
) with respect

to Lγ . Then, for any decision policy Ψγ satisfying the false
alarm and the sampling rate constraints in Definition 6, and
γ sufficiently large, there exists a time period of duration Lγ
from which Ψγ fails to sample even a point, with probability
bounded away from zero. As a consequence,

lim inf
γ→∞

dγ ≥
γ

2
. (17)

IV. PROOFS

A. Proof of Theorem 1

(i) Suppose that there exists some δ > 0 such that Lγ ≥
(1+δ) log γ

D(f1||f0) for some δ > 0, and consider the CuSum
rule

τ∗γ = inf{n|max
k≤n

n∑
i=k

Zi ≥ log γ}. (18)

It follows that for any 0 < ε ≤ δ

Pν(τ∗γ − ν > (1 + ε)
log γ

D(f1||f0)
|τ∗γ > ν)

≤ Pν

 ⋂
ν≤n≤ν+(1+ε) log γ

D(f1||f0)

{
max
k≤n

n∑
i=k

Zi < log γ

}
≤ Pν

(1+ε) log γ
D(f1||f0)∑
i=ν

Zi < log γ

 −→
γ→∞

0, (19)

where the first inequality follows from the definition of
the CuSum rule in (18) and the last step follows from
applying the law of large numbers to the sequence of
i.i.d. random variables {Zi}i≥ν with mean D(f1||f0).
Note that (19) establishes an upper bound on the de-
tection delay. Moreover, by causality of the stopping
time random variables, (7) gives a lower bound on the
detection delay, which combined with the upper bound
yields the desired result.

(ii) Now suppose that Lγ ≤ (1−δ) log γ
D(f1||f0) for some δ > 0.

Let Ψγ = (Sγ , τ) be any decision policy satisfying the
false alarm constraint E∞[τ ] ≥ γ. Since E∞[τ ] ≥ γ, it
follows [Proof of Theorem 1 in [4]] that for any integer
m < γ, there is some ν ≥ 1 such that

P∞(τ ≥ ν) > 0, and P∞(τ < ν +m|τ ≥ ν) ≤ m

γ
. (20)

Let m be the largest integer less than 2γδ−ε for some
0 ≤ ε < δ. Define the events

Cε =

0 ≤ τ − ν ≤ γδ−ε,
min{τ,ν+Lγ−1}∑

i=ν

Zi < (1− ε) log γ

 ,

and

C′ε =

0 ≤ τ − ν ≤ γδ−ε,
min{τ,ν+Lγ−1}∑

i=ν

Zi ≥ (1− ε) log γ

 .

Following the same lines as that of Lai’s change of
measure argument (Proof of [4, Theorem 1]), we have:

Claim 1 As long as δ > 2ε > 0,

Pν(Cε|τ ≥ ν) −→
γ→∞

0. (21)

Claim 2
Pν {C′ε | τ ≥ ν} −→

γ→∞
0. (22)

Combining Claims 1 and 2, we get
Pν
{
τ − ν ≤ γδ−ε|τ ≥ ν

}
→ 0, as γ tends to infinity,

for ν given in (20). Since ε can be made arbitrarily
small, it follows that

sup
ν>0

Pν
{
τ − ν > γδ|τ ≥ ν

}
→ 1, (23)

which in turn implies

lim inf
γ→∞

dγ
γδ
≥ 1,

as desired.

B. Description of DE-CuSum decision rule

Let us briefly review the DE-CuSum detection rule Ψ̂
proposed in [8]. Define the sampling indicator random variable
Mi as being 1 when the time instance i is sampled, and zero
otherwise. Start with D0 = 0 and fix γ > 0, µγ > 0 and
h > 0. Also, define the stopping time as

τ̂γ
def
= inf{n ≥ 1|Dn > log γ}. (24)

At each step, the statistic Dn is being updated as follows

Dn+1 =

{
min{Dn + µ, 0} if Dn < 0
(Dn + Zn+1)h+ otherwise (25)

where (x)h+
def
= max{x,−h}. In fact the algorithm naturally

performs a hypothesis test between the distributions f1 and f0
and skips the samples while the statistic is below 0. As long
as Dn < 0, which depends on the last undershoot from 0,
samples are skipped and Dn is being updated by adding the
deterministic increment µ to Dn.

C. Proof of Theorem 2

We prove this theorem by the DE-CuSum procedure Ψ̂γ

described earlier. It is shown in [8] that the sampling constraint
ρ(Ψ̂γ) ≤ ργ is met if

µγ < K
ργ

1− ργ
, (26)

where K =
E∞[|Zh+1 ||Z1<0] P∞(Z1<0)2

E∞[λ∞] is a constant that does
not scale with γ and λγ = inf{n ≥ 1|

∑n
i=k Zi /∈ [0, log γ]}

[8].



Using standard arguments, in [8] it is shown that the
asymptotic worst case delay in probability of the DE-CuSum
rule is bounded from above as follows

lim sup
γ→∞

dγ(Ψ̂) ≤ log γ

D(f1||f0)
+K ′

1

µγ
+K ′′, (27)

where K ′ =
E∞[|Dh+λ∞ |]

P1(Dλ∞>0)P1(Z1<0) +h and K ′′ = 2+ 1
P1(Dλ∞>0)

are well defined constants which do not scale with γ.

Given a sampling rate constraint ργ = ω( 1
log γ ), by setting

the step parameter for the sojourn time in the DE-CuSum
procedure as µγ = θ(ργ) such that (26) is satisfied, the desired
result follows by considering (27) and the lower bound (7).

D. Proof of Theorem 3

We show that for any decision policy Ψγ = {Sγ , τ}
satisfying the false alarm constraint E∞[τ ] ≥ γ and the
sampling rate constraint ρ(Ψγ) ≤ ργ with ργ = o( 1

Lγ
), there

exists a time interval of duration Lγ such that, with probability
bounded away from zero, no point within this interval is
sampled by Ψγ , for γ sufficiently large.

First note that since Ψγ satisfies the false alarm constraint
E∞[τ ] ≥ γ, we get

P∞(τ ≥ γ

2
) ≥ P∞(τ ≥ γ

2
+ ν)

>
1

2
P∞(τ ≥ ν) > 0, (28)

where the last inequalities hold for some ν ≥ 1 by (20) with
m = γ

2 .

The proof is based on the fact that as long as the samples
are drawn from the distribution f0, the sampling rate constraint
guarantees existence of sufficiently long gaps among the sam-
pling times. Note that if no change occurs at all, the sampling
rate constraint implies

E∞
[ |S(γ/2)|

γ/2

∣∣τ ≥ γ

2

]
= o(

1

Lγ
). (29)

Divide the time frame up to time ν = γ
2 into consecutive

intervals of size Lγ . For each time interval, define the follow-
ing indicator random variable

Ki =

{
1 If at least one point from ith interval is sampled
0 Otherwise.

We show that there exists an interval from which no sample
is taken with probability bounded away from zero. In fact, we
show that

lim sup
γ→∞

max
j

P∞(Kj = 0|τ ≥ γ

2
) = 1. (30)

Otherwise,

lim inf
γ→∞

min
i

P∞(Ki = 1|τ ≥ γ

2
) > 0, (31)

which implies

E∞
[ |S(γ/2)|

γ/2

∣∣τ ≥ γ

2

] (a)

≥ E∞
[ 2

γ

bγ/2Lγc∑
j=1

Kj

∣∣τ ≥ γ

2

]

=
2

γ

bγ/2Lγc∑
j=1

P∞(Kj = 1|τ ≥ γ

2
)

= θ(
1

Lγ
), (32)

where (a) holds because more than one sample can be taken
from a given interval. Note that (32) contradicts (29), estab-
lishing that (30) holds.

Combining (28) with (30) yields P∞(Kj = 0) > 0 for
some j ≥ 1. Therefore, for any decision policy, there exists
some interval of size Lγ from which no sample is taken with
probability bounded away from zero.

Suppose now that a change of duration Lγ occurs along
the sequence within the jth interval for which P∞(Kj = 0) >
0. In such a case, with probability bounded away from zero,
no point of the change period is sampled, meaning that only
samples from the distribution f0 are observed. In this case,
since E∞[τ ] ≥ γ, it follows using an argument similar to part
(ii) of theorem 1 that

lim inf
γ→∞

d(Ψγ) ≥ γ

2
, (33)

as desired.
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