
On the Capability of Greedy Codeword Assignment
Scheme in Finding Binary Fix-Free Codes
Ehsan Ebrahimzadeh, Student Member, IEEE, Mohammadali Khosravifard, Member, IEEE,

Adel Aghajan, Student Member, IEEE, Aaron Gulliver, Senior Member, IEEE

Abstract— The greedy codeword assignment scheme (GCAS)
is guaranteed to find a binary fix-free code for any length vector
(`1, `2, . . . , `n) with Kraft sum not greater than 5

8
. In this paper,

we examine the attributes of GCAS from different perspectives.
First it is proven that under certain conditions GCAS constructs
fix-free codes for length vectors with Kraft sum greater than 5

8
.

In order to evaluate the capability of GCAS in finding fix-free
codes, the iterative version of GCAS (IGCAS) is applied to all
length vectors with Kraft sum 3

4
for n ≤ 32. This is also done for

the first constructive approach in the literature, i.e., the Harada-
Kobayashi (HK) algorithm. It is observed that the Kraft sum
of the fix-free codewords obtained using IGCAS (resp. HK) is
at least 23

32
(resp. 11

16
). Combining the construction results from

IGCAS and HK, it is shown that there exists a fix-free code for
each length vector with Kraft sum 3

4
and n ≤ 32.

I. INTRODUCTION

A code is said to be prefix-free if none of the codewords is
a prefix of any other. Among prefix-free codes, those which
also satisfy the suffix-free property are called fix-free codes.
Using fix-free codes, the decoding speed can be doubled and
the robustness to transmission errors is increased. Because of
these advantages, fix-free codes are used in video standards
such as H.263+ and MPEG-4.

It is well-known that the Kraft inequality, i.e.
∑n
i=1 2−`i ≤

1, is a sufficient condition for the existence of a prefix-free
code with lengths (`1, `2, . . . , `n). In the context of fix-free
codes however, finding such a sufficient condition is still a very
challenging problem. Initially, Ahlswede et al. [1] proposed
the following conjecture:

3
4 -conjecture: There exists a fix-free code for the length

vector (`1, `2, . . . , `n) if
∑n
i=1 2−`i ≤ 3

4 .
Since then, several attempts have been made to prove the

3
4 -conjecture or weaker sufficient conditions. Most of these
sufficient conditions involve a constraint on the Kraft sum
of the length vector (and possibly an additional constraint).
Hence they are referred to as Kraft-type sufficient conditions.
Using a probabilistic approach, some sufficient conditions
are proposed which are not Kraft-type [2][3]. A survey on
sufficient conditions for the existence of fix-free codes is
provided in [4].

Several of the approaches are constructive in nature [5] [6].
The objective is to assign fix-free codewords (C1, C2, . . . , Cn)
to the given length vector (`1, `2, . . . , `n). Throughout this
paper, all length vectors are assumed to be sorted in ascending
order, i.e., `1 ≤ `2 ≤ · · · ≤ `n.

In most of the constructive approaches, codeword assign-
ment is accomplished in a sequential manner. This means

that codeword Ci is chosen immediately after selecting
C1, C2, . . . , Ci−1 from the available codewords, i.e., those for
which none of the previously assigned codewords is a prefix
or suffix. Denote this set of available codewords by ψ(i).
The main difference between the algorithms proposed in the
literature is their strategy in selecting Ci from ψ(i). Harada
and Kobayashi [5] suggested the first available codeword in
the lexicographic order as Ci. Using this algorithm, denoted
HK, they proved the following theorem:

Theorem 1: If |{`1, `2, . . . , `n}| = 2, then
∑n
i=1 2−`i ≤ 3

4
is a sufficient condition for the existence of a binary fix-free
code.
The capability of the HK algorithm in code assignment is
studied in [7]. Another innovative strategy is to consider the
starting and ending symbols of the codewords. With this idea,
Yekhanin [8] proved the following theorem:

Theorem 2:
∑n
i=1 2−`i ≤ 5

8 is a sufficient condition for the
existence of a binary fix-free code.
A greedy version of Yekhanin’s approach, called Greedy
Codeword Assignment Scheme (GCAS), was used to prove
a sufficient condition similar to that of Theorem 2 for D-ary
alphabets [6].

Thus far, we have considered GCAS and HK as two
algorithms which have been proposed to provide construc-
tive proofs for some Kraft-type sufficient conditions (i.e.,
Theorems 1 and 2). Following a quite different approach
[9][10], Savari et al. formulated the problem of the existence
of a fix-free code for a given length vector as a boolean
satisfiability (SAT) problem. In this way, the satisfiability
of the equivalent SAT problem is a necessary and sufficient
condition for the existence of a fix-free code. However, this
sufficient condition is not Kraft-type. Moreover, since the
codeword assignment is not performed in a sequential manner,
SAT-based algorithms are not as efficient as their sequential
counterparts in terms of time complexity. This is because
in the sequential algorithms selection of the target codeword
depends only on the codewords assigned beforehand, while in
a SAT-based scheme all codelengths influence the codeword
assignment. The advantage of SAT-based schemes is that they
explicitly determine whether or not a fix-free code exists for
a given length vector.

Besides HK and GCAS, several constructive algorithms
have been proposed to find an efficient fix-free code for a given
probability vector (not length vector) [11] [12] [13]. In these
algorithms, the goal is to assign as many fix-free codewords
as possible to the associated Huffman codelengths. When no

codeword is feasible, the codelengths are changed accordingly.
In this way, these algorithms manipulate the initial length
vector so that a fix-free code is found. Hence no sufficient
conditions can be provided by these algorithms. From this
point of view, they are not comparable to GCAS and HK.

In this work, we evaluate the capability of GCAS in
constructing binary fix-free codes. This involves both proving
existence theorems and constructing fix-free codewords for
given length vectors. The performance of GCAS is compared
with that of HK.

The remainder of this paper is organized as follows. Section
II presents some theorems that are proven via GCAS. In Sec-
tion III, (the iterative version of)GCAS and HK are employed
to construct fix-free codewords for all length vectors with Kraft
sum 3

4 for n ≤ 32. Finally, Section IV concludes the paper.

II. SUFFICIENT CONDITIONS PROVIDED BY GCAS

In this section, GCAS is employed to prove some existence
theorems. After a brief description of GCAS, we show how
under certain conditions the upper bound 5

8 can be improved.
Since the 3

4 -conjecture is proved for `1 = 1 [8], here
we consider the problem of assigning fix-free codewords
(C1, C2, . . . , Cn) to the length vector (`1, `2, . . . , `n) where
`1 > 1.

GCAS follows a sequential assignment in a greedy manner
as described below. Initially, the algorithm starts with `1 and
assigns the block of `1 zeros to C1. Let A∗x,y denote the
set of all finite binary sequences starting with symbol x and
ending with symbol y. Therefore, ψx,y(i) = A∗x,y

⋂
ψ(i) is

the set of all available codewords (elements of ψ(i)), starting
with x and ending with y, where x, y ∈ {0, 1}. In the i-th
step of the algorithm, Ci is selected from ψxi,yi

(i). In other
words, xi and yi denote the first and last symbols of the
codeword Ci, respectively. In fact, the greediness of GCAS
is considered in deciding on (xi, yi). If ψxi−1,yi−1(i) 6= ∅, we
set (xi, yi) = (xi−1, yi−1); otherwise GCAS switches to the
next pair of (x, y) according to the lexicographic order (i.e.
(0, 0) → (0, 1) → (1, 0) → (1, 1)). The algorithm terminates
unsuccessfully if for some n′ < n we have Cn′ ∈ ψ1,1(n′) but
ψ1,1(n′ + 1) = ∅. Note that while choosing a codeword from
ψxi,yi

(i), GCAS selects the first available codeword according
to the lexicographic order.

For a given length vector Ln = (`1, `2, . . . , `n), let υ(Ln)
denote the last index for which GCAS succeeded in assigning
a codeword. Pseudo-code describing GCAS is given below:

Greedy Codeword Assignment Scheme

input: Ln = (`1, `2, . . . , `n) with 1 < `1 ≤ · · · ≤ `n.
set: α1 = α2 = β1 = β3 = 0 and α3 = α4 = β2 = β4 = 1;
initialize: i = 1 and j = 1
while i ≤ n and j ≤ 4

(xi, yi)← (αj , βj)
if ψxi,yi(i) 6= ∅

Choose the first codeword in ψxi,yi
(i) as Ci

i← i+ 1
else

j ← j + 1
endif

endwhile
υ(Ln)← i− 1
if υ(Ln) < n

GCAS failed to find a binary fix free code for Ln
endif
output: (C1, . . . , Cυ(Ln))

When GCAS is applied to a length vector Ln, define the partial
Kraft sums as

Sx,y(Ln) =
∑

m: m≤υ(Ln)

Cm∈A∗x,y

2−`m

for x, y ∈ {0, 1}. Throughout this paper, the argument Ln is
omitted wherever it is obvious from the context. In [6], the
following theorem on the partial Kraft sums was proven.

Theorem 3: If GCAS is applied to a given length vector
Ln and fails to find all the required fix-free codewords, i.e.,
υ(Ln) < n, then the partial Kraft sums satisfy

1 0 0 0
0.5 1 0 0
0.5 0 1 0
0 0.5 0.5 1



S0,0

S0,1

S1,0

S1,1

 ≥


0.25
0.25
0.25
0.25

 .

Corollary 1: For a length vector Ln = (`1, `2, . . . , `n), if∑n
i=1 2−`i ≤ 1

2 + 1
2S0,0 , then GCAS succeeds in finding the

required fix-free codewords for Ln, i.e. υ(Ln) = n.
Proof: From Theorem 3 and Lemma 3 in [6] it is easily
observed that

if υ(Ln) < n then

υ(Ln)∑
i=1

2−`i = S0,0 + S0,1 + S1,0 + S1,1 ≥
1
2

+
1
2
S0,0 . (1)

Consequently

if
υ(Ln)∑
i=1

2−`i <
1
2

+
1
2
S0,0 then υ(Ln) = n. (2)

Now we prove that

if
n∑
i=1

2−`i =
1
2

+
1
2
S0,0 then υ(Ln) = n. (3)

This is because υ(Ln) < n and
∑n
i=1 2−`i = 1

2 + 1
2S0,0 imply

that
∑υ(Ln)
i=1 2−`i < 1

2 + 1
2S0,0 and hence (2) gives υ(Ln) =

n, which is a contradiction. Also since
∑υ(Ln)
i=1 2−`i ≤∑n

i=1 2−`i , (2) implies

if
n∑
i=1

2−`i <
1
2

+
1
2
S0,0 then υ(Ln) = n. (4)

Hence, (3) and (4) complete the proof.
Noting Corollary 1 and S0,0 ≥ 1

4 , GCAS is guaranteed to
find a fix-free code if

∑n
i=1 2−`i ≤ 5

8 [6]. Now, considering

an additional constraint, we improve the constructed Kraft-sum
from 5

8 to 21
32 .

Theorem 4: If
∑
i:`i=`1

2−`i = 1
4 and

∑n
i=1 2−`i ≤ 21

32 ,
then GCAS finds a fix-free code.
Proof: The case `1 = 2 has been considered earlier (see
Theorem 5 in [6]). Thus, assume that `1 ≥ 3. Noting Corollary
1, it is enough to show that S0,0 ≥ 5

16 . First, define m = 2`1−2.
Note that GCAS selects all m codewords of length `1 from
A∗0,0. For i > m, the inclusion-exclusion principle implies that

|ψ0,0(i)| ≥ 2`i−2 −
∑

j:`i=`j

1−
∑

j:`i>`j

2`i−`j−1

−
∑

j:`i>`j

2`i−`j−1 + 2`i−4. (5)

The above inequality can be justified if we note that:

• The number of codewords of length `i in A∗0,0 is 2`i−2.
• The number of codewords of length `i in A∗0,0 which

were previously assigned is
∑
j:`i=`j

1.
• The number of codewords of length `i in A∗0,0 for which

a previously assigned codeword is a prefix (resp. suffix)
is
∑
j:`i>`j

2`i−`j−1
(

resp.
∑
j:`i>`j

2`i−`j−1
)

.
• Let ϕ0,0(i) denote the set of codewords of length `i in
A∗0,0 for which one of the previously assigned codewords
of length `1 is a prefix and one (not necessarily distinct)
is a suffix, i.e., codewords that are excluded twice in
the inclusion-exclusion. We have |ϕ0,0(i)| ≥ 2`i−4. The
proof of this assertion is given below for the two possible
cases.
Case 1: `i 6= 2`1 − 1
Since all codewords of length `1 in A∗0,0 have been
assigned previously, ϕ0,0(i) contains 2`i−4 codewords of
length `i having the form

0 · · · 0︸ ︷︷ ︸
`1

· · ·
`1︷ ︸︸ ︷

0 · · · 0, if `i > 2`1 − 1

and

0 · · ·
`1︷ ︸︸ ︷

0 · · · 0︸ ︷︷ ︸
`1

· · · 0, if `i < 2`1 − 1.

Case 2: `i = 2`1 − 1
Clearly, in this case there are exactly 2`i−3 codewords of
length `i in ϕ0,0(i) having the form

0 · · ·
`1︷ ︸︸ ︷

0︸ ︷︷ ︸
`1

· · · 0 .

Rearranging (5), one may write

|ψ0,0(i)| ≥ 2`i−2 −
i−1∑
j=1

2`i−`j + 2`i−4

= 2`i−2 −
m∑
j=1

2`i−`j −
i−1∑

j=m+1

2`i−`j + 2`i−4

= 2`i

 1
16
−

i−1∑
j=m+1

2−`j

 , (6)

where (6) is obtained from the fact that
∑m
j=1 2−`j = 1

4 . Thus
(6) implies |ψ0,0(i) > 0| as long as

∑i−1
j=m+1 2−`j < 1

16 . As a
result, GCAS terminates assigning codewords from A∗0,0 only
if S0,0 ≥ 5

16 . This completes the proof.
Considering another constraint on the length vector, the

upper bound of 5
8 is improved in the following theorem.

Theorem 5: If
∑
i:`i=`1

2−`i = 1
8 and

∑n
i=1 2−`i ≤ 81

128 ,
then GCAS finds a fix-free code.
Proof: The proof is very similar to that of Theorem 4. It is
enough to replace 2`i−4 in (5) by 2`i−6 and show that S0,0 ≥
17
64 . To do so, it should be shown that |ϕ0,0(i)| ≥ 2`i−6. Define
m = 2`1−3. Since GCAS assigns codewords in lexicographic
order, all m codewords of length `1 start with 00 and end with
0. Therefore, ϕ0,0(i) contains all codewords having the form

00 · · · 0︸ ︷︷ ︸
`1

· · ·
`1︷ ︸︸ ︷

00 · · · 0, if `i > 2`1 − 1

and

00 · · ·
`1︷ ︸︸ ︷

00 · · · 0︸ ︷︷ ︸
`1

· · · 0, if `1 + 1 < `i < 2`1 − 2

which means that |ϕ0,0(i)| ≥ 2`i−6. Similarly, it is not hard to
verify that for the other cases of `i, there exists at least 2`i−5

codewords in ϕ0,0(i). Thus for i > m, one can write

|ψ0,0(i)| ≥ 2`i−2 −
i−1∑
j=1

2`i−`j + 2`i−6

= 2`i−2 −
m∑
j=1

2`i−`j −
i−1∑

j=m+1

2`i−`j + 2`i−6

= 2`i

1
4
− 1

8
−

i−1∑
j=m+1

2−`j +
1
64

 (7)

and conclude that GCAS terminates assigning codewords from
A∗0,0 only if S0,0 ≥ 17

64 .
Note that following Yekhanin’s approach, one cannot guar-

antee sufficient conditions with Kraft sum greater than 5
8 .

In fact, the results of this section are a consequence of the
greediness of GCAS, i.e., the inequality given by (1).

III. CONSTRUCTION OF FIX-FREE CODES

In the previous section, GCAS was used to guarantee the
existence of a binary fix-free code for length vectors with Kraft
sum greater than 5

8 that also satisfy an additional constraint.
The performance of GCAS is examined in this section

from a purely constructive point of view. To do so, it is aimed
at employing GCAS for finding fix-free codewords for length
vectors with Kraft sum 3

4 and correspondingly comparing its
performance with that of HK. In order to have a meaningful
comparison, the codeword assignment procedure in GCAS
should be revised. Since GCAS was intended to be used
for proving existence theorems, some surplus codewords are
deliberately omitted in the codeword assignment procedure.
In fact, GCAS terminates once the available codewords in
A∗

1,1
are exhausted, while there may be available codewords

of subsequent lengths in A∗
0,0

⋃
A∗

0,1

⋃
A∗

1,0
. Thus a natural

means of improving GCAS is to applying it iteratively. This
means that in the iterative version of GCAS, which is denoted
by IGCAS henceforth, the algorithm switches to ψ0,0(i)
(and then ψ0,1(i)) instead of terminating. In other words, the
while loop in the pseudo-code of GCAS is replaced with the
following loop in IGCAS.

while i ≤ n and
⋃4
k=1 ψαk,βk

(i) 6= ∅
(xj , yj)← (αj , βj)
if ψxi,yi

(i) 6= ∅
Choose the first codeword in ψxi,yi

(i) as Ci
i← i+ 1

else
j ← (j mod 4) + 1

endif
endwhile

In this way, the algorithm terminates only when there ex-
ists no available codeword. Therefore, it is now compara-
ble with HK. Obviously, the capability of GCAS is po-
tentially improved if it is applied iteratively. For example,
GCAS fails for the length vector J = (3, 3, 3, 6, 6, . . . , 6) ∈
L 3

4
(27) for which finding a fix-free code with the HK algo-

rithm is guaranteed by Theorem 1. However, using IGCAS,
one obtains the fix-free code (000, 010, 001, 011011, 011101,
011111, 100100, 100110, 101100, 101110, 110100, 110110,
111100, 111110, 100011, 100101, 100111, 101011, 101101,
101111, 110011, 110101, 110111, 111011, 111101, 111111,
011100) for the length vector J . More generally, Theorem 1
which was initially proven using the HK algorithm can also
be proven for D = 2 using the iterative version of IGCAS.
The proof is omitted as a proof of the result already exists.

As stated previously, in this section, the objective is to
employing the algorithms for finding fix-free codewords for
length vectors with Kraft sum 3

4 .

The set of all such length vectors is denoted by

L 3
4
(n) =

{
(`1, . . . , `n) | `1 ≤ . . . ≤ `n,

n∑
i=1

2−`i =
3
4

}
.

This set is of particular interest for the following two reasons:
1) The 3

4 -conjecture is proven if it is shown that there exists
a fix-free code for each length vector with Kraft sum 3

4 .
2) If the 3

4 -conjecture is proven, to find the minimum
redundancy length vector among those for which the
existence of a fix-free code is guaranteed, attention
should be given to those vectors with Kraft sum equal
to 3

4 . This fact is stated formally in the following
proposition.

Proposition 1: For any probability vector P =
(p1, p2, . . . , pn) satisfying p1 ≥ p2 ≥ · · · ≥ pn > 0,
we have

arg min
`1,`2,...,`n∑n
i=1 2−`i≤ 3

4

n∑
i=1

pi`i = arg min
`1,`2,...,`n∑n
i=1 2−`i= 3

4

n∑
i=1

pi`i.

Proof: Let

L∗n = (`∗1, `
∗
2, . . . , `

∗
n) = arg min

`1,`2,...,`n∑n
i=1 2−`i≤ 3

4

n∑
i=1

pi`i

and assume that
∑n
i=1 2−`

∗
i < 3

4 . Multiply both sides of
this inequality by 2`

∗
n . It is clear that `∗n ≥ 2 and `∗i ≤

`∗n for i < n. As a result, both sides of the inequality
1 +

∑n−1
i=1 2`

∗
n−`

∗
i < 3 × 2`

∗
n−2 are integers. Therefore, we

can write 2 +
∑n−1
i=1 2`

∗
n−`

∗
i ≤ 3× 2`

∗
n−2. This shows that the

Kraft sum of the length vector L′n = (`∗1, `
∗
2, . . . , `

∗
n − 1) is

not greater than 3
4 . However, the average codelength of L′n is

less than that of L∗n and this contradicts the optimality of L∗n.
Therefore, it must be that

∑n
i=1 2−`

∗
i = 3

4 .
The key to generating the elements of L 3

4
(n) is to consider

the set of compact length vectors (i.e. those with Kraft sum
1), which has been studied extensively in the literature, e.g.
[14][15]. Each (n+1)-tuple compact length vector containing
length 2 is associated with an element of L 3

4
(n), and vice

versa.
For a given length vector Ln, let σ(Ln) denote the Kraft

sum of the codewords which are successfully assigned by
the algorithm. The following parameters can be considered
in evaluating the capability of the algorithm to find fix-free
codes.
• Denote the number of length vectors for which the

algorithm fails to find a fix-free code by

Fn =
∣∣∣∣{Ln ∈ L 3

4
(n) | σ(Ln) <

3
4

}∣∣∣∣ .
• Denote the minimum Kraft sum σ(Ln) among all length

vectors in L 3
4
(n) by

γn = min
Ln∈L 3

4
(n)

σ(Ln).

Table I gives the values of Fn and γn for both IGCAS and
HK and n ≤ 32. This shows that IGCAS finds fix-free codes
for a remarkable percentage (more than 99.99%), of length
vectors Ln ∈ L 3

4
(n). Moreover, it has far fewer failures than

HK.
Interestingly, for n ≤ 32, there are only two length vectors

for which both IGCAS and HK fail to find a fix-free code.
These length vectors are:
J22 = (2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, . . . , 6) ∈ L 3

4
(22)

J32 = (2, 3, 5, 5, 5, 5, 5, 5, 7, . . . , 7) ∈ L 3
4
(32).

Fortunately, it is not hard to find fix-free codewords for these
length vectors. For instance, the binary representation of the
integer vectors

• K22 = (0, 9, 10, 11, 13, 15, 18, 19, 22, 25, 26, 30, 17, 29,
33, 34, 35, 46, 49, 55, 59, 63)

• K32 = (3, 5, 1, 2, 8, 9, 16, 18, 12, 14, 17, 20, 22, 24, 25, 26,
28, 30, 42, 44, 46, 49, 52, 56, 57, 58, 60, 62, 68, 70, 76, 78)

provide fix-free codewords for J22, J27 and J32, respectively.
Thus we can conclude the following theorem.

Theorem 6: If n ≤ 32, then
∑n
i=1 2−`i = 3

4 is a sufficient
condition for the existence of a binary fix-free code.

TABLE I
NUMBER OF FAILURES AND MINIMUM CONSTRUCTED KRAFT SUM FOR

GCAS AND HK

n
∣∣∣L 3

4
(n)

∣∣∣ FIGCAS
n γIGCAS

n FHK
n γHK

n

3 2 0 3/4 0 3/4

4 2 0 3/4 0 3/4

5 4 0 3/4 0 3/4

6 7 0 3/4 0 3/4

7 11 0 3/4 0 3/4

8 20 0 3/4 0 3/4

9 36 0 3/4 0 3/4

10 63 0 3/4 0 3/4

11 113 1 23/32 0 3/4

12 202 0 3/4 2 23/32

13 360 0 3/4 2 11/16

14 646 0 3/4 2 11/16

15 1157 1 3/4 2 11/16

16 2073 1 3/4 5 11/16

17 3719 1 3/4 7 11/16

18 6668 1 3/4 11 11/16

19 11958 0 3/4 19 11/16

20 21452 1 23/32 34 11/16

21 38480 3 23/32 61 11/16

22 69029 4 23/32 111 11/16

23 123842 5 23/32 192 11/16

24 222175 8 23/32 339 11/16

25 398596 13 23/32 606 11/16

26 715124 22 23/32 1081 11/16

27 1283006 39 23/32 1924 11/16

28 2301866 60 23/32 3445 11/16

29 4129849 108 23/32 6165 11/16

30 7409494 189 23/32 11042 11/16

31 13293651 338 23/32 19796 11/16

32 23850683 604 23/32 35494 11/16

As for the second parameter, i.e. γn, Table I reveals that with
IGCAS the Kraft sum of the constructed fix-free codewords
is at least 23

32 for n ≤ 32.
Examining the successes and failures of IGCAS, it was

also observed that it finds a fix-free code if each element in
{`1, `2, . . . , `n} repeats an even number of times in the length
vector (`1, `2, . . . , `n) with n ≤ 32. We conjecture that IGCAS
finds a fix-free code for all such length vectors.

IV. CONCLUSIONS

The usefulness of the greedy codeword assignment scheme
(GCAS) was demonstrated by proving some existence theo-
rems. The capability of GCAS to find binary fix-free codes
was examined and compared with the HK algorithm.

To make a fair comparison, the iterative version of GCAS
(denoted by IGCAS) is proposed. Exploiting construction
results obtained using IGCAS and HK, the existence of a fix-
free code for the length vectors with Kraft sum 3

4 and n ≤ 32
was proven. Furthermore, implementation of of the algorithms
leads to the conjecture that IGCAS finds fix-free codewords
for all length vectors with Kraft sum not greater than 23

32 .
In summary, this paper provides further evidence on the

validity of the 3
4 -conjecture.

REFERENCES

[1] R. Ahlswede, B. Balkenhol and L. Khachatrian, “Some properties of
fix-free codes,” Proc. Int. Sem. on Coding Theory and Combinatorics,
Thahkadzor, Armenia, pp. 20-33, 1996.

[2] C.Ye and R. W.Yeung, “Some basic properties of fix-free codes,” IEEE
Trans. Inform. Theory, vol. 47, no. 1, pp. 72–87, Jan. 2001.

[3] S. A. Savari, “On optimal reversible-variable-length codes,” Proc. IEEE
Int. Workshop Inf. Theory Appl., San Diego, CA, pp. 311–317, Feb. 2009.

[4] H. Schnettler, “On the 3
4

-conjecture for fix-free codes: A survey,”
[Online]. Available: //arxiv.org/PS-cache/arxiv/pdf/
0709/0709.2598v1.pdf

[5] K. Harada and K. Kobayashi, “A note on the fixfree property,” IEICE
Trans. Fundamentals, vol. E82-A, no. 10, pp. 2121-2128, Oct. 1999.

[6] M. Khosravifard, H. Halabian and T. A. Gulliver, “A Kraft-type sufficient
condition for the existence of D-ary fix-free codes,” IEEE Trans. Inform.
Theory, vol. 56, no. 6, pp. 2920–2927, June 2010.

[7] M. Khosravifard and T. A. Gulliver, “On the capability of the Harada-
Kobayashi algorithm in finding fix-free codewords,” Proc. Int. Symp. on
Inform. Theory and its Appl., pp. 1–4, Dec. 2008.

[8] S. Yekhanin, “Improved upper bound for the redundancy of fix-free
codes,” IEEE Trans. Inform. Theory,, vol. 50, no. 11, pp. 2815-2818,
Nov. 2004.

[9] S. A. Savari, “On minimum-redundancy fix-free codes,” Proc. IEEE Data
Compression Conference, Snowbird, UT, pp. 3–12, Mar. 2009.

[10] N. Abedini, S. P. Khatri and S. A. Savari, “An algorithm for construction
of efficient fix-free codes,” Proc. IEEE Data Compression Conference,
Snowbird, UT, pp. 169–178, Mar. 2010.

[11] Y. Takishima, M. Wada and H. Murakami, “Reversible variable length
codes,” IEEE Trans. Commun., vol. 43, pp. 158–162, Feb.–Apr. 1995.

[12] C. W. Tsai and J. L. Wu, “On constructing the Huffman-code based
reversible variable length codes,” IEEE Trans. Commun., vol. 49, no. 9,
pp. 1506–1509, Sept. 2001.

[13] K. Lakovic and J. Villasenor, “An algorithm for construction of efficient
fix-free codes,” IEEE Commun. Letters, vol. 7, no. 8, pp. 391-393, Aug.
2003.

[14] S. Zaks, “Lexicographic generation of ordered trees,” Theoretical Com-
puter Science, vol. 10, pp. 63–82, 1980.

[15] M. Khosravifard, M. Esmaeili, H. Saidi and T. A. Gulliver, “A tree
based algorithm for generating all possible binary compact codes with N
codewords,” IEICE Trans. Fundamentals, vol. E86-A, no. 10, pp. 2510–
2516, Oct. 2003.

