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Abstract—We address outage analysis for a two-user parallel
Gaussian interference channel consisting of two sub-channels.
Each sub-channel is modelled by a two-user Gaussian interference
channel with quasi-static and flat fading. Both users employ
single-layer Gaussian codebooks and maintain a statistical cor-
relation ρ between the signals transmitted over the underlying
sub-channels. If the receivers treat interference as noise (TIN)
or cancel interference (CI), the value of ρ minimizing the
outage probability approaches 1 as the signal-to-noise ratio
(SNR) approaches infinity, while ρ = 0 is optimum under joint
decoding (JD) regardless of the value of SNR. Motivated by these
observations, we let ρ = 1 under TIN and CI and ρ = 0 under JD
and compute the outage probability in finite SNR assuming the
direct and crossover channel coefficients are independent zero-
mean complex Gaussian random variables with possibly different
variances. In the asymptote of large SNR and assuming the
transmission rate per user is r log snr, we show that the outage
probability scales as snr−(1−r) under both TIN and CI, while it
vanishes at least as fast as snr−min{2−r,4(1−r)} log snr under JD.

I. INTRODUCTION

A. Motivation

Due to the growing demand for higher data rates, modern
wireless communication systems are required to serve a large
number of users that simultaneously share resources such as
time or frequency. This has motivated a remarkable body of
research that explore fundamental limits of communication in
frequency-selective interference networks.

Fading selectivity in frequency can be leveraged to create
diversity through applying coding across different frequency
bands. In an interference channel, the effect of fading selec-
tivity is twofold, as the underlying diversity can be exploited
in either decoding the desired data, or handling interference to
facilitate the decoding of the desired data. This paper addresses
the interactions and trade-offs between these two possibilities
for interference management in frequency selective fading
interference networks.

The channel model adopted in this article is based on
assigning each group of such distant tones, for which the
corresponding channel gains are assumed to be independent,
among multiple users, resulting in multi-user interference.
Namely, we cast the problem into the framework of par-
allel Gaussian interference channels (PGICs) where several
transmitter-receiver pairs simultaneously share a number of
independent Gaussian interference channels (GICs).

In such a setup, it is reasonable to assume that the
transmitters do not have access to channel state information
(CSI). Moreover, due to slow fading over each sub-channel,
transmitted codewords are not spanned over all fading states,

casting the problem into the realm of “outage analysis”. In this
non-ergodic setting, the probability that a target transmission
rate falls out of the achievable rate region at the receiver
is of particular interest, which is referred to as the outage
probability.

In practice, the receivers rely on either decoding the
interference, or treating the interference as additive noise. The
main reason is the simplicity of the receiver structure and lower
complexity of system design. Moreover, such schemes are
well-suited for practical situations where CSI is not available
at the transmitter side. It would be of interest to study if adding
the capability of joint decoding to the PGIC model studied in
the current article, for which the transmitters are unaware of
the CSI, can be helpful in improving the decay rate of the
outage probability.

B. Summary of Prior Art and Contributions

Characterizing the capacity region of GICs and hence, PG-
ICs remains an open problem in general. Exploiting previously
known capacity results for GICs [1]–[3], the authors in [4]
derive the capacity region of a two-user PGIC in the strong
interference regime. Sufficient conditions are derived in [5] that
characterize the sum-capacity of a two-user PGIC in the so-
called noisy interference regime, where separate encoding over
different GICs at the transmitter side and treating interference
as noise at the receiver side is optimal. It is shown in [6] that
separate coding over the underlying GICs is not necessarily a
capacity achieving scheme. The vector GIC, or multiple-input
multiple-output (MIMO) GIC, is studied in [7]–[9] in both
noisy interference and strong interference regimes. In a more
recent research paper [10], the authors derive general sufficient
conditions for a vector GIC to be in the noisy interference
regime capturing the previously known results in [7], [8].

In fading GICs where transmitters are unaware of the
realizations of channel coefficients outage probability turns out
to be the right performance measure. As SNR grows to infinity,
the so-called diversity-multiplexing gain tradeoff (DMT) is a
standard approach to study the outage probability. The DMT
of a two-user GIC with fading is investigated in [11]–[15]
under different scenarios in terms of channel coefficients and
transmitter cooperation.

In this paper we consider a two-user PGIC consisting of
two independent GICs. The channel coefficients in each GIC
are modelled by quasi-static and flat fading. We study the out-
age probability for a simple transmission scheme where both
users utilize single-layer Gaussian codebooks and maintain
a statistical correlation of ρ between the signals transmitted
simultaneously over the two GICs. It is shown that whether



the receivers treat interference as noise or cancel interference,
the optimum ρ that minimizes the outage probability per
user approaches 1 as SNR grows to infinity. In contrast,
ρ = 0 is optimum under joint decoding regardless of the
value of SNR. Motivated by these observations, we study
the outage probability in finite SNR under TIN, CI and JD
and for their corresponding optimum correlation coefficient
in a scenario where the channel gains represent Rayleigh
fading. We determine closed form expressions for the exact
probability of outage under TIN and CI that decay like snr−d

in the asymptote of large SNR for some d > 0. Closed
form expressions for the outage probability seem elusive under
JD, however, we are able to derive an upper bound on the
probability of outage in terms of the modified Bessel functions
of second kind. In particular, it is shown that the leading term
in the expansion of this upper bound scales like snr−d

′
log snr

where 0 < d < d′. To the authors’ best knowledge, this paper
addresses outage analysis in a PGIC for the first time.

C. Notations
Vectors are shown by an arrow on top, e.g. ~x. Random

quantities are shown in bold, e.g. x and ~y with realizations
x and ~y, respectively. The probability density function (PDF),
expectation and covariance matrix of a random vector ~x are
shown by p~x(·), E[~x] and cov(~x), respectively. The transpose
and transpose conjugate of a matrix X are denoted by Xt

and X†, respectively. The Frobenius norm of a vector ~x is
shown by ‖~x‖ =

√
~x †~x. The probability and the indicator

function of an event E are shown by P(E) and 1E , respectively.
For two function f and g, we write f = o(g) to mean
limx→a

f(x)
g(x) = 0 where a is clear from the context. A

circularly symmetric complex Gaussian random vector ~x with
mean ~m and covariance matrix C is shown by CN (~m,C). A
vector of length n whose all entries are equal to 0 or 1 is shown
by ~0n and ~1n, respectively. Finally, any equality, inequality or
limit involving random quantities is understood to hold in the
“almost surely” sense unless otherwise stated.

D. Organization
System model and the signalling scheme are discussed

in Section II. Section III offers an overview of our main
contributions. The proofs of all the Theorems can be found
in [16], nevertheless, we include the proof of Theorem 1 in
Section IV to give the reader a flavor of the proofs. Concluding
remarks appear in Section V.

II. SYSTEM MODEL AND THE SIGNALLING SCHEME

Consider the two-user PGIC in Fig.1 which consists of two
GICs. The channels are modelled by static and non frequency-
selective coefficients. The channel coefficient of the direct link
for user i in GICk is shown by ai,k and the crossover channel
coefficient from transmitter j to receiver i (i 6= j) in GIC k is
shown by bi,k. Denoting the signal at receiver i over GIC k
during a transmission slot by yi,k, one can write[
yi,1
yi,2

]
︸ ︷︷ ︸
~yi

=

[
ai,1 0
0 ai,2

]
︸ ︷︷ ︸

Ai

[
xi,1
xi,2

]
︸ ︷︷ ︸
~xi

+

[
bi,1 0
0 bi,2

]
︸ ︷︷ ︸

Bi

[
xj,1
xj,2

]
︸ ︷︷ ︸
~xj

+

[
zi,1
zi,2

]
︸ ︷︷ ︸
~zi

(1)
for (i, j) ∈ {(1, 2), (2, 1)}, where xi,k is the signal sent by
transmitter i over GIC k and zi,k ∼ CN (0, 1) is the additive
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Fig. 1. A two-user PGIC consisting of two underlying GICs.

ambient noise at receiver i over GIC k. The noise samples zi,1
and zi,2 are independent. Throughout the paper, we make the
following assumptions:

Assumption 1 We focus on a “fair” scenario where the
transmission rates and average transmission powers at both
transmitters are identical.

Denoting the average transmission power per transmitter by
P , it is required that

E
[
|xi,1|2

]
= E

[
|xi,2|2

]
= P/2, i = 1, 2. (2)

Each user utilizes a single-layer random Gaussian code-
book. The signals transmitted over each GIC are independent
from transmission slot to transmission slot, however, the sig-
nals transmitted over the two GICs at the same transmission
slot have a correlation ρ, i.e.,

~xi ∼ CN
([

0
0

]
,
P

2

[
1 ρ
ρ∗ 1

])
, i = 1, 2, |ρ| ≤ 1. (3)

III. SUMMARY OF RESULTS

In this paper, we study three different decoding schemes
at the receivers, i.e., treating interference as noise (TIN),
cancelling interference (CI) and joint decoding (JD). The
achievable rate region under decoding scheme S is shown by
R(S)(ρ, P,H) where S can be either TIN, CI or JD and

H = [H1 H2] , Hi =

[
ai,1 bi,1
ai,2 bi,2

]
, i = 1, 2. (4)

In practice, the matrix Hi is a realization of a random matrix
Hi. For technical reasons, we make the following assumption:

Assumption 2 H1 and H2 are independent random matri-
ces, each having a probability density function.

We consider a scenario where both transmitters are unaware
of H1 and H2, while, receiver i has perfect knowledge of Hi.
Denoting the transmission rate per user by r logP for 0 ≤ r <
1 and P > 1, the outage event under decoding scheme S is
defined by

O(S)(ρ, r, P ) = {(r logP, r logP ) /∈ R(S)(ρ, P,H)}. (5)



Let us define ρ(S)(r, P ) as the value of ρ that minimizes the
outage probability under decoding scheme S, i.e.,

ρ(S)(r, P ) = arg min
ρ:|ρ|≤1

P(O(S)(ρ, r, P )). (6)

Using “min” in (6) is meaningful, if P(O(S)(ρ, r, P )) is a
continuous function of ρ. In [16], we find a continuous function
R(S) for S = TIN,CI and JD, respectively, so that1

P(O(S)(ρ, r, P )) =

P
(
R(S)(ρ, P,H1) ≤ R′

)
+ P

(
R(S)(ρ, P,H2) ≤ R′

)
−P
(
R(S)(ρ, P,H1) ≤ R′

)
P
(
R(S)(ρ, P,H2) ≤ R′

)
, (7)

where R′ = r logP . Due to continuity of R(S),
limn→∞R(S)(ρn, P,H1) = R(S)(ρ, P,H1) for any 0 ≤
ρ ≤ 1 and any sequence ρn converging to ρ. Therefore,
the sequence of random variables R(S)(ρn, P,H1) converges
weakly2 to R(S)(ρ, P,H1) as n goes to infinity. Therefore, if

P
(
R(S)(ρ, P,H1) = R′

)
= 0, (8)

then

lim
n→∞

P
(
R(S)(ρn, P,H1) ≤ R′

)
=P

(
R(S)(ρ, P,H1) ≤ R′

)
. (9)

Since ρ and the sequence ρn converging to ρ are arbitrary,3
P
(
R(S)(ρ, P,H1) ≤ R′

)
is a continuous function of ρ by (9).

Inspecting the explicit expressions for R(S) given in [16] and
representing H1 as a vector in C4, it is immediate to see
that the level sets of the function R(S)(ρ, P, ·) have Lebesgue
measure zero. Moreover, according to Assumption 2, H1 is a
random matrix with density. As such,

P
(
R(S)(ρ, P,H1) = R′

)
=

∫
R(S)(ρ,P,H1)=R′

pH1
(H1)dH1 = 0,

i.e., the sufficient condition in (8) holds. Similarly, one can
show that P

(
R(S)(ρ, P,H2) ≤ R′

)
is continuous in terms of

ρ. Therefore, the infimum of P(O(S)(ρ, r, P )) is achieved over
the compact region |ρ| ≤ 1.

For arbitrary P > 1, characterizing ρ(S)(r, P ) in closed
form turns out to be a difficult problem under TIN and CI.
In this paper, we only study the effect of ρ on the outage
probability in the asymptote of large P for these schemes.
The first contribution of the paper is that under TIN and CI,
transmitting the same signal over both GICs is “optimal” as P
grows to infinity, while transmitting independent signals over
the two GICs is optimal under JD regardless of r and P .

Theorem 1 Let 0 ≤ r < 1. Under Assumption 2 in above and
regardless of S being TIN or CI,

(i) limP→∞ P(O(S)(ρ, r, P )) = 10≤ρ<1.

(ii) limP→∞ ρ(S)(r, P ) = 1.

1The quantity R(S)(ρ, P,Hi) is an achievable rate for user i under S =
TIN, however, there is no such interpretation for S = CI and S = JD.

2Almost sure convergence of a sequence of real-valued random variables
implies weak convergence [18]. We say Xn converges weakly to a random
variable X , if limn→∞ P(Xn ∈ C) = P(X ∈ C) for any Borel set C
with topological boundary ∂C such that P(X ∈ ∂C) = 0.

3For a function f : R → R, limx→x0 f(x) = L if and only if
limn→∞ f(xn) = L for any sequence xn satisfying limn→∞ xn = a.
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Fig. 2. An example of a function f : [0, 1] × (1,∞) → [0, 1] such
that limP→∞ f(ρ, P ) = 10≤ρ<1, however, argmin0≤ρ≤1 f(ρ, P ) = 1

P
which tends to 0 as P grows to infinity.

Moreover ρ(JD)(r, P ) = 0 for any P > 1.

Proof: We prove this for S = TIN in section IV. The
other two cases are treated in [16].

Remark 1- One may understand the importance of ρ = 1
at high SNR as follows. Let xi be the signal transmitted by
user i over both underlying GICs. Then (1) can be written as

~y = x1~a+ x2
~b+ ~z, (10)

where ~a = [a1,1 a1,2]
t and ~b = [b1,1 b1,2]

t. By assumption,
~a,~b 6= ~02 and det(H1) 6= 0 for almost all realizations H1

of H1. Hence, receiver 1 can find a vector ~b⊥, say ~b⊥ =
[b1,2 −b1,1]t, such that ~b t⊥~b = 0 and ~b t⊥~a 6= 0. Multiplying
both sides of (10) by ~b t⊥, we get ~b t⊥~y = ~b t⊥~ax1 +~b

t
⊥~z which

represents a point-to-point channel with mutual information
log
(
1 +

|~b t
⊥~a|

2

‖~b⊥‖2
P
2

)
. This quantity scales like logP . As such,

one expects the outage probability to vanish in the asymptote
of large P for any 0 ≤ r < 1. �

Remark 2- In Theorem 1, part (ii) is not a di-
rect consequence of part (i). For example, the func-
tion f : [0, 1] × (1,∞) → [0, 1] shown in Fig.
2 is such that limP→∞ f(ρ, P ) = 10≤ρ<1, however,
argmin0≤ρ≤1 f(ρ, P ) = 1

P which tends to 0 as P grows to
infinity. Nevertheless, we use part (i) to prove part (ii). �

Motivated by Theorem 1, we fix ρ = 1 under TIN and CI
and ρ = 0 under JD in order to compute the outage probability
under the assumption that the channel coefficients represent
Rayleigh fading:

Theorem 2 Let all the channel coefficients be independent
and the direct and crossover channel coefficients be real-
izations of CN (0, 1) and CN (0, σ2), respectively. For any
0 ≤ r < 1,

P
(
O(TIN)(1, r, P )

)
= (4 + o(1))P−(1−r)

and

P
(
O(CI)(1, r, P )

)
=

(
4

σ2
+ o(1)

)
P−(1−r).



Moreover,

P(O(JD)(0, r, P )) ≤ (8(2− r) + o(1))P−(2−r) lnP,

for 0 ≤ r < 2
3 and

P(O(JD)(0, r, P )) ≤
(
32

σ4
(1− r) + o(1)

)
P−4(1−r) lnP,

for 2
3 < r < 1.

Proof: See [16].

It is worth mentioning that if the two users are orthogonal,
i.e., user 1 only transmits over GIC 1 and user 2 only transmits
over GIC 2, the outage probability scales like 2P−(1−r) +
o(P−(1−r)) [17]. Comparing this with the performance under
JD in Theorem 2 verifies the advantage of transmitting over
both GICs compared to avoiding interference.

Remark 3- Characterizing the optimum correlation coeffi-
cient ρ for a two-user PGIC with an arbitrary number N > 2
of parallel GICs is a hard problem, even in the scenario where
the receivers treat interference as noise. It is shown in [16]
that the probability of the achievable rate per user having a
local minimum at ρ = 0 approaches 1 in the asymptote of
large P . Moreover, assuming the channel coefficients represent
Rayleigh fading, the outage probability is computed for ρ = 1
in [16]. It is verified that the outage probability is given by
2NN−1

(N−1)!P
−(N−1)(1−r) + o(P−(N−1)(1−r)) for any 0 ≤ r < 1.

This simplifies to (11) for N = 2.

Remark 4- For simplicity of presentation, we drop the
index i and show ai,j and bi,j by aj and bj , respectively,
throughout the rest of the paper. It is always clear from the
context that the omitted index i is i = 1 or i = 2. �

IV. PROOF OF THEOREM 1 FOR S = TIN

Assuming users treat each other as Gaussian noise, an
achievable rate for user 1 is given by

R(TIN)(ρ, P,H1) = log
det(cov(~y1))

det(cov(B1 ~x2 + ~z1))
. (11)

This can be expanded as

R(TIN)(ρ, P,H1) = log
α(P,H1)− β(P,H1)|ρ|2
γ(P,H1)− δ(P,H1)|ρ|2

, (12)

where

α(P,H1) = (1 +
P

2
(|a1|2 + |b1|2))(1 +

P

2
(|a2|2 + |b2|2)),

β(P,H1) =
P 2

4
|a1a∗2 + b1b

∗
2|2,

γ(P,H1) = (1 +
P

2
|b1|2)(1 +

P

2
|b2|2),

δ(P,H1) =
P 2

4
|b1|2|b2|2.

By (12), without loss of generality we may assume
ρ ∈ [0, 1]. By Assumption 2, H1 and H2 are
independent and hence, P(O(TIN)(ρ, r, P )) =
P(R(TIN)(ρ, P,H1) ≤ R′ or R(TIN)(ρ, P,H2) ≤ R′) can be
expanded as in (7). Next, let us observe the following:

(a) If lim
P→∞

P(R(TIN)(ρ, P,Hi) ≤ R′) = 10≤ρ<1 for i = 1, 2,

then lim
P→∞

P(O(TIN)(ρ, r, P )) = 10≤ρ<1 as well.

(b) The function (x, y) 7→ x + y − xy for 0 ≤ x, y ≤ 1
is increasing in terms of x and y separately. Therefore,
if we can show that the value of ρ minimizing pi =
P(R(TIN)(ρ, P,Hi) ≤ R′) approaches 1 as P grows to
infinity regardless of i = 1, 2, then the value of ρ minimizing
p1 + p2 − p1p2 also approaches 1 as P increases.

Thus, it is enough to show that parts (i) and (ii)
in Theorem 1 hold for P(R(TIN)(ρ, P,H1) ≤ R′) and
P(R(TIN)(ρ, P,H2) ≤ R′) in place of P(O(TIN)(ρ, r, P )).
Here we only consider i = 1; the case i = 2 is treated similarly.

Proof of part (i) in Theorem 1 for S = TIN: We consider
the cases ρ = 1 and ρ < 1 separately: First, suppose ρ = 1 in
(12). Then R(TIN)(1, P,H1) equals

log

(
1 +

P
2

(
|a1|2 + |a2|2

)
+ P 2

4 |det(H1)|2
1 + P

2 (|b1|2 + |b2|2)

)
.

Since b1, b2,det(H1) 6= 0, then limP→∞
R(TIN)(1,P,H1)

logP = 1.
This shows that R(TIN)(1, P,H1)−R scales like (1−r) logP
as P grows to infinity. Since 0 ≤ r < 1, we get

lim
P→∞

1R(TIN)(1,P,H1)≤R′ = 0. (13)

For ρ < 1, by (12), R(TIN)(ρ, P,H1) equals

log
1 + P

2 c+
P 2

4

(
c′ − ρ2|a1a∗2 + b1b

∗
2|2
)

1 + P
2 (|b1|2 + |b2|2) + P 2

4 |b1|2|b2|2(1− ρ2)
,

where c = |a1|2 + |a2|2 + |b1|2 + |b2|2 and c′ = (|a1|2 +
|b1|2)(|a2|2 + |b2|2). We have (|a1|2 + |b1|2)(|a2|2 + |b2|2)−
|a1b

∗
2 + a2b

∗
1|2 = |a1b2 − a2b1|2 = |det(H1)|2 > 0. Since

ρ < 1, we get (|a1|2 + |b1|2)(|a2|2 + |b2|2) − ρ2|a1b
∗
2 +

a2b
∗
1|2 > 0 as well. By assumption, b1, b2 6= 0 and hence,

(1− ρ2)|b1|2|b2|2 > 0. Therefore, R(TIN)(ρ, P,H1) does not
scale with logP , i.e., R(TIN)(ρ, P,H1) − r logP scales like
−r logP . So,

lim
P→∞

1R(TIN)(ρ,P,H1)≤r logP = 1. (14)

Using (13) and (14) together with dominated convergence
[18], the proof of (i) is complete.

Proof of part (ii) in Theorem 1 for S = TIN: Denote
the value of ρ that minimizes P(R(TIN)(ρ, P,H1) ≤ R′) by
ρ
(TIN)
1 (r, Pn). It is enough to prove

lim
n→∞

ρ
(TIN)
1 (r, Pn) = 1, (15)

where Pn is an arbitrary increasing and unbounded sequence
of positive real numbers. Let us fix 0 < ε < 1. Since any
probability measure on C4 is compact-regular [18], one can
find a compact set Hε ⊆ C4 such that P(vec(H1) ∈ Hε) ≥ ε
where vec(H1) is a vector obtained by stacking the columns
of H1 in a single column. Define the event Q = {vec(H1) ∈



Hε}. Then

P
(
R(TIN)(ρ, Pn,H1) ≤ r logPn

)
≥ P

(
R(TIN)(ρ, Pn,H1) ≤ r logPn, Q

)
= P

(
R(TIN)(ρ, Pn,H1) ≤ r logPn |Q

)
P(Q)

≥ εP
(
R(TIN)(ρ, Pn,H1) ≤ r logPn |Q

)
. (16)

For 0 ≤ ρ ≤ 1, we define

pn(ρ) = P
(
R(TIN)(ρ, Pn,H1) ≤ r logPn |Q

)
.

We note the following:

(a) pn(ρ) is continuous in terms of ρ for any n. This follows
from similar lines of reasoning after (6) where we verified
continuity of P(R(TIN)(ρ, P,H1) ≤ R′) in terms of ρ.

(b) There is Nε ≥ 1 such that for n ≥ Nε, pn+1(ρ) ≥
pn(ρ) for any 0 ≤ ρ ≤ ε. To see this, we observe that
∂
∂P

(
R(TIN)(ρ, P,H1)−R′

)
< 0 if and only if

µ4P
4 + µ3P

3 + µ2P
2 + µ1P − r < 0, (17)

where µi = µi(ρ, r,H1) for i = 1, 2, 3, 4 are polynomials
in terms of r, ρ and real and imaginary parts of the chan-
nel coefficient. In particular, µ4(ρ, r,H1) = −r

(
(|a1|2 +

|b1|2)(|a2|2 + |b2|2) − ρ2|a1a
∗
2 + b1b

∗
2|2
)
|b1|2|b2|2(1 − ρ2).

Since µ4(ρ, r,H1) is the coefficient of P 4 which is the term
with the largest exponent of P on the left side of (17) and
µ4(ρ, r,H1) < 0, it follows that there is P (ρ, r,H1) > 0
such that for P > P (ρ, r,H1), the inequality in (17) is
valid. Since the roots of any polynomial are continuous
functions of the coefficients of that polynomial, P (ρ, r,H1)
is a continuous function of µis and hence, it is a contin-
uous function of ρ and H1. As [0, ε] × Hε is compact,
sup0≤ρ≤ε,vec(H1)∈Hε P (ρ, r,H1) is finite and one can find
Nε ≥ 1 so that Pn > sup0≤ρ≤ε,vec(H1)∈Hε P (ρ, r,H1) holds
for any n ≥ Nε. Then it is guaranteed that the sequence
R(TIN)(ρ, Pn,H1) − r logPn is decreasing in n as long as
0 ≤ ρ ≤ ε, H1 ∈ Hε and n ≥ Nε. In turn, it follows that
pn(ρ) ≤ pn+1(ρ) for any 0 ≤ ρ ≤ ε and n ≥ Nε, as claimed.

(c) By Theorem 1(i), lim
n→∞

pn(ρ) = 1 for any 0 ≤ ρ ≤ ε.

Putting these three observations together, pn(·) for n ≥ Nε
is an increasing sequence of continuous functions (in terms
of ρ) that converges point-wise to the constant 1 over the
compact interval [0, ε]. Applying Dini’s uniform convergence
lemma [18], this point-wise convergence is indeed uniform,
i.e.,

lim
n→∞

inf
0≤ρ≤ε

pn(ρ) = 1. (18)

By (18), there exists N ′ε ≥ 1 such that if n ≥ N ′ε, then
inf0≤ρ≤ε pn(ρ) > ε. Combining this fact and (16), we obtain

inf
0≤ρ≤ε

P
(
R(TIN)(ρ, Pn,H1) ≤ r logPn

)
≥ ε inf

0≤ρ≤ε
pn(ρ)

≥ ε2, (19)

for any n ≥ N ′ε. Moreover, by part (i) in Theorem 1, there

exists N ′′ε ≥ 1 such that if n ≥ N ′′ε ,

P
(
R(TIN)(1, Pn,H1) ≤ r logPn

)
< ε2. (20)

Combining (19) and (20), we conclude that

ρ
(TIN)
1 (r, Pn) > ε, (21)

for any n ≥ max{N ′ε, N ′′ε }. Since 0 < ε < 1 is arbitrary, (21)
is equivalent to (15). This completes the proof of part (ii).
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