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Abstract

This paper addresses outage analysis for a two-user parallel Gaussian interference channel consisting of two

sub-channels. Each sub-channel is modelled by a two-user Gaussian interference channel with quasi-static and flat

fading. Both users employ single-layer Gaussian codebooks and maintain a statistical correlation ρ between the

signals transmitted over the underlying sub-channels. If the receivers treat interference as noise (TIN) or cancel

interference (CI), the value of ρ minimizing the outage probability approaches 1 as the signal-to-noise ratio (SNR)

approaches infinity, while ρ = 0 is optimum under joint decoding (JD) regardless of the value of SNR. Motivated

by these observations, we let ρ = 1 under TIN and CI and ρ = 0 under JD and compute the outage probability in

finite SNR assuming the direct and crossover channel coefficients are independent zero-mean complex Gaussian

random variables with possibly different variances. In the asymptote of large SNR and assuming the transmission

rate per user is r log snr, it is shown that the outage probability scales like snr−(1−r) under both TIN and CI, while

it vanishes at least as fast as snr−min{2−r,4(1−r)} log snr under JD. The paper is concluded by extending some of

the results to an arbitrary number of sub-channels.

INDEX TERMS

Interference Cancellation, Joint Decoding, Outage Probability, Parallel Gaussian Interference Channel,

Treating Interference as Noise.
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I. INTRODUCTION

A. Motivation

Due to the growing demand for higher data rates, modern wireless communication systems are required

to serve a large number of users that simultaneously share resources such as time or frequency. This has

motivated a remarkable body of research that explore fundamental limits of communication in frequency-

selective interference networks.

Fading selectivity in frequency (or time) can be leveraged to create diversity through applying coding

across different frequency bands (or across different time symbols). In an interference channel, the effect

of fading selectivity is twofold, as the underlying diversity can be exploited in: (i) decoding the desired

data, or (ii) handling the interference to facilitate the decoding of the desired data. The current article

addresses the interactions and trade-offs between these two possibilities for interference management in

frequency selective fading interference networks.

Orthogonal frequency division multiplexing (OFDM) converts a frequency selective static channel into

a set of sub-channels, each with a flat and fixed channel gain. In orthogonal frequency division multiple

access (OFDMA), sub-channels are distributed among transmitter-receiver pairs in such a way that distant

enough sub-channels are allocated to a given transmitter-receiver pair. For example, in a system with

T = AB tones shared among A users, a given user can be assigned tones which are at least A units

apart. Such an allocation helps enhancing frequency diversity and reducing the inter-career interference

among sub-channels assigned to a given transmitter-receiver pair. The channel model adopted in this article

is based on assigning each group of such distant tones, for which the corresponding channel gains are

assumed to be independent, among multiple users, resulting in multi-user interference. Namely, we cast the

problem into the framework of parallel Gaussian interference channels (PGICs) where several transmitter-

receiver pairs simultaneously share a number of independent Gaussian interference channels (GICs).

In such a setup, it is reasonable to assume that the transmitters do not have access to channel state

information (CSI). Moreover, due to slow fading over each sub-channel, transmitted codewords are not

spanned over all fading states, casting the problem into the realm of “outage analysis”. In this non-ergodic

setting, the probability that a target transmission rate falls out of the achievable rate region at the receiver

is of particular interest, which is referred to as the outage probability.

In order to justify the assumption of independent channel gains over different sub-channels, we note that

the channel impulse response can be manipulated to induce and/or enhance selectivity, which can be in
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turn exploited to increase diversity, thereby leading to a lower outage probability. A common method for

enhancing frequency selectivity, widely used in practice [1]–[3], is based on the so-called delay diversity

in OFDM/OFDMA. Practically, delay diversity results in large variations of the channel gains among

different tones (albeit still dependent). This feature, in conjunction with allocation of distant tones to

each user, is the motivation for considering interference channels with independent fading model. Another

method to enhance selectivity in time is based on using multiple transmit antennas and applying a different

phase shift to each antenna in subsequent time symbols [4]. Again, by multiplexing A users in AB units

of time, a given user can be assigned time symbols which are at least A units apart, providing further

grounds for the PGIC model considered in this article.

In practice, the receivers rely on either decoding the interference, or treating the interference as additive

noise. The main reason is the simplicity of the receiver structure and lower complexity of system design.

Moreover, such schemes are well-suited for practical situations where CSI is not available at the transmitter

side. It would be of interest to study if adding the capability of joint decoding to the PGIC model studied

in the current article, for which the transmitters are unaware of the CSI, can be helpful in improving the

decay rate of the outage probability.

B. Summary of Prior Art and Contributions

Characterizing the capacity region of GICs and hence, PGICs remains an open problem in general.

Exploiting previously known capacity results for GICs [5]–[7], the authors in [8] derive the capacity

region of a two-user PGIC in the strong interference regime. Sufficient conditions are derived in [9] that

characterize the sum-capacity of a two-user PGIC in the so-called noisy interference regime, where separate

encoding over different GICs at the transmitter side and treating interference as noise at the receiver side

is optimal. It is shown in [10] that separate coding over the underlying GICs is not necessarily a capacity

achieving scheme. The vector GIC, or multiple-input multiple-output (MIMO) GIC, is studied in [11]–

[13] in both noisy interference and strong interference regimes. In a more recent research paper [14],

the authors derive general sufficient conditions for a vector GIC to be in the noisy interference regime

capturing the previously known results in [11], [12].

In fading GICs where transmitters are unaware of the realizations of channel coefficients outage

probability turns out to be the right performance measure. Computing outage probability in finite SNR

can be a challenging task. For example, a conjecture made in [15] regarding the outage probability in a

single-user MIMO channel is only partially answered [16], [17]. As SNR grows to infinity, the so-called
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diversity-multiplexing gain tradeoff (DMT) coined in [18] is a standard approach to study the outage

probability. Motivated by [19] where the capacity region of a two-user GIC is determined to within one

bit, the DMT of a two-user GIC with fading is investigated in [20]–[25] under different scenarios in terms

of channel coefficients and transmitter cooperation.

In this paper we consider a two-user PGIC consisting of two independent GICs. The channel coefficients

in each GIC are modelled by quasi-static and flat fading. We study the outage probability for a simple

transmission scheme where both users utilize single-layer Gaussian codebooks and maintain a statistical

correlation of ρ between the signals transmitted simultaneously over the two GICs. It is shown that

whether the receivers treat interference as noise or cancel interference, the optimum ρ that minimizes

the outage probability per user approaches 1 as SNR grows to infinity. In contrast, ρ = 0 is optimum

under joint decoding regardless of the value of SNR. Motivated by these observations, we study the

outage probability in finite SNR under TIN, CI and JD and for their corresponding optimum correlation

coefficient in a scenario where the channel gains represent Rayleigh fading. We determine closed form

expressions for the exact probability of outage under TIN and CI that decay like snr−d in the asymptote

of large SNR for some d > 0. Closed form expressions for the outage probability seem elusive under

JD, however, we are able to derive an upper bound on the probability of outage in terms of the modified

Bessel functions of second kind. In particular, it is shown that the leading term in the expansion of this

upper bound scales like snr−d
′
log snr where 0 < d < d′. To the authors’ best knowledge, this paper

addresses outage analysis in a PGIC for the first time.

C. Notations

Here is a list of notations adopted throughout the paper. Vectors are shown by an arrow on top such

as ~x. Random quantities are shown in bold such as x and ~y with realizations x and ~y, respectively. The

probability density function (PDF), expectation and covariance matrix of a random vector ~x are shown by

p~x(·), E[~x] and cov(~x), respectively. The transpose and transpose conjugate of a matrix X are denoted

by Xt and X†, respectively. An n× n diagonal matrix with diagonal elements x1, · · · , xn is denoted by

diag(x1, · · · , xn). The Frobenius norm of a vector ~x is shown by ‖~x‖ =
√
~x †~x. The probability and the

indicator function of an event E are shown by P(E) and 1E , respectively. For two function f and g, we

write f = o(g) to mean limx→a
f(x)
g(x)

= 0 where a is clear from the context. A function f is said to be Θ(1)

if c1 ≤ |f(x)| ≤ c2 for all x ≥ x0 where x0 and c > 0 are constants. A circularly symmetric complex

Gaussian random vector ~x with mean ~m and covariance matrix C is shown by CN (~m,C). A vector of
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Fig. 1. A two-user PGIC consisting of two underlying GICs.

length n whose all entries are equal to 0 or 1 is shown by ~0n and ~1n, respectively. Finally, any equality,

inequality or limit involving random quantities is understood to hold in the “almost surely” sense unless

otherwise stated.

D. Organization

The rest of the paper is organized as follows. System model and the signalling scheme are discussed

in Section II. Section III offers an overview of contributions made in the paper. Sections IV, V and

VI are devoted to prove Theorem 1 for TIN, CI and JD, respectively. In Section VII, we investigate the

interactions between the variance of crossover channel coefficients and the correlation coefficient ρ among

the transmitted signals in determining the outage behaviour of the system. Section VIII is an attempt to

extend the results to a PGIC with more than two parallel GICs in a setup where both users apply TIN.

Finally, Section IX provides a summary of the paper and offers some observations in a PGIC with more

than two users.

II. SYSTEM MODEL AND THE SIGNALLING SCHEME

Consider the two-user PGIC in Fig. 1 which consists of two GICs. The channels are modelled by static

and non frequency-selective coefficients. The channel coefficient of the direct link for user i in GIC k is

shown by ai,k and the crossover channel coefficient from transmitter j to receiver i (i 6= j) in GIC k is

shown by bi,k. Denoting the signal at receiver i over GIC k during a transmission slot by yi,k, one can

write yi,1
yi,2

 =

ai,1 0

0 ai,2

xi,1
xi,2

+

bi,1 0

0 bi,2

xj,1
xj,2

+

zi,1
zi,2

 , 1 ≤ i, j ≤ 2, i 6= j, (1)
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where xi,k is the signal sent by transmitter i over GICk and zi,k ∼ CN (0, 1) is the additive ambient noise

at receiver i over GIC k. The noise samples zi,1 and zi,2 are independent.

One can alternatively write (1) as

~yi = Ai ~x1 +Bi ~xj + ~zi, 1 ≤ i, j ≤ 2, i 6= j, (2)

where Ai = diag(ai,1, ai,2) and Bi = diag(bi,1, bi,2). The definitions for ~xi, ~xj, ~yi and ~zi are clear by

comparing (1) and (2). Throughout the paper, we make the following assumption:

Assumption 1 We focus on a “fair” scenario where the transmission rates and average transmission

powers at both transmitters are identical.

Denoting the average transmission power per transmitter by P , it is required that

E
[
|xi,1|2

]
= E

[
|xi,2|2

]
=
P

2
, i = 1, 2. (3)

Each user utilizes a single-layer random Gaussian codebook. The signals transmitted over each GIC

are independent from transmission slot to transmission slot, however, the signals transmitted over the two

GICs at the same transmission slot have a correlation ρ, i.e.,

~xi ∼ CN

0

0

 , P
2

 1 ρ

ρ∗ 1

 , i = 1, 2, |ρ| ≤ 1. (4)

III. SUMMARY OF RESULTS

In this paper, we study three different decoding schemes at the receivers, i.e., treating interference

as noise (TIN), cancelling interference (CI) and joint decoding (JD). The achievable rate region under

decoding scheme S is shown by R(S)(ρ, P,H) where S can be either TIN, CI or JD and

H =
[
H1 H2

]
, Hi =

ai,1 bi,1

ai,2 bi,2

 , i = 1, 2. (5)

In practice, the matrix Hi is a realization of a random matrix H i. For technical reasons, we make the

following assumption:

Assumption 2 H1 and H2 are independent random matrices, each having a probability density function.
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We consider a scenario where both transmitters are unaware of H1 and H2, while, receiver i has perfect

knowledge of Hi. Denoting the transmission rate per user by r logP for 0 ≤ r < 1 and P > 1, the outage

event under decoding scheme S is defined by

O(S)(ρ, r, P ) = {(r logP, r logP ) /∈ R(S)(ρ, P,H)}. (6)

Let us define ρ(S)(r, P ) as the value of ρ that minimizes the outage probability under decoding scheme

S, i.e.,

ρ(S)(r, P ) = arg min
ρ:|ρ|≤1

P(O(S)(ρ, r, P )). (7)

Using “min” in (7) is meaningful, if P(O(S)(ρ, r, P )) is a continuous function of ρ. In Sections IV, V and

VI, we find a continuous function R(S) for S = TIN,CI and JD, respectively, so that1

P(O(S)(ρ, r, P )) = P
(
R(S)(ρ, P,H1) ≤ r logP

)
+ P

(
R(S)(ρ, P,H2) ≤ r logP

)
−P
(
R(S)(ρ, P,H1) ≤ r logP

)
P
(
R(S)(ρ, P,H2) ≤ r logP

)
. (8)

Due to continuity of R(S), limn→∞R
(S)(ρn, P,H1) = R(S)(ρ, P,H1) for any 0 ≤ ρ ≤ 1 and any sequence

ρn converging to ρ. Therefore, the sequence of random variables R(S)(ρn, P,H1) converges weakly2 to

R(S)(ρ, P,H1) as n grows to infinity. Therefore, if

P
(
R(S)(ρ, P,H1) = r logP

)
= 0, (9)

then

lim
n→∞

P
(
R(S)(ρn, P,H1) ≤ r logP

)
= P

(
R(S)(ρ, P,H1) ≤ r logP

)
. (10)

Since ρ and the sequence ρn converging to ρ are arbitrary,3 P
(
R(S)(ρ, P,H1) ≤ r logP

)
is a continuous

function of ρ by (10). Inspecting the explicit expressions for R(S) given in Sections IV, V and VI and

representing H1 as a vector in C4, it is immediate to see that the level sets of the function R(S)(ρ, P, ·)
have Lebesgue measure zero. Moreover, according to Assumption 2, H1 is a random matrix with density.

1The quantity R(S)(ρ, P,Hi) is an achievable rate for user i under S = TIN, however, there is no such interpretation for S = CI and
S = JD.

2Almost sure convergence of a sequence of real-valued random variables implies weak convergence [28]. We say Xn converges weakly to
a random variable X , if limn→∞ P(Xn ∈ C) = P(X ∈ C) for any Borel set C with topological boundary ∂C such that P(X ∈ ∂C) = 0.

3For a function f : R→ R, limx→x0 f(x) = L if and only if limn→∞ f(xn) = L for any sequence xn satisfying limn→∞ xn = a [29].
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As such,

P
(
R(S)(ρ, P,H1) = r logP

)
=

∫
R(S)(ρ,P,H1)=r logP

pH1(H1)dH1 = 0, (11)

i.e., the sufficient condition in (9) holds. Similarly, one can show that P
(
R(S)(ρ, P,H2) ≤ r logP

)
is

continuous in terms of ρ. Therefore, the infimum of P(O(S)(ρ, r, P )) is achieved over the compact region

|ρ| ≤ 1.

For arbitrary P > 1, characterizing ρ(S)(r, P ) in closed form turns out to be a difficult problem under

TIN and CI. In this paper, we only study the effect of ρ on the outage probability in the asymptote of

large P for these schemes. The first contribution of the paper is that under TIN and CI, transmitting the

same signal over both GICs is “optimal” as P grows to infinity, while transmitting independent signals

over the two GICs is optimal under JD regardless of r and P .

Theorem 1 Let 0 ≤ r < 1. Under Assumption 2 in above and regardless of S being TIN or CI,

(i) limP→∞ P(O(S)(ρ, r, P )) = 10≤ρ<1.

(ii) limP→∞ ρ
(S)(r, P ) = 1.

Moreover ρ(JD)(r, P ) = 0 for any P > 1.

Proof: See Sections IV, V and VI for S = TIN,CI and JD, respectively.

Remark 1- One may understand the importance of ρ = 1 at high SNR as follows. Let xi be the signal

transmitted by user i over both underlying GICs. Then (2) can be written as

~y = x1~a+ x2
~b+ ~z, (12)

where ~a =
[
a1,1 a1,2

]t
and ~b =

[
b1,1 b1,2

]t
. By assumption, ~a,~b 6= ~02 and det(H1) 6= 0 for almost

all realizations H1 of H1. Hence, receiver 1 can find a vector ~b⊥, say ~b⊥ =
[
b1,2 −b1,1

]t
, such that

~b t⊥
~b = 0 and ~b t⊥~a 6= 0. Multiplying both sides of (12) by ~b t⊥, we get ~b t⊥~y = ~b t⊥~ax1 +~b t⊥~z which represents

a point-to-point channel with mutual information log
(

1 +
|~b t⊥~a|

2

‖~b⊥‖2
P
2

)
. This quantity scales like logP . As

such, one expects the outage probability to vanish in the asymptote of large P for any 0 ≤ r < 1. �

Remark 2- In Theorem 1, part (ii) is not a direct consequence of part (i). For example, the func-

tion f : [0, 1] × (1,∞) → [0, 1] shown in Fig. 2 is such that limP→∞ f(ρ, P ) = 10≤ρ<1, however,

arg min0≤ρ≤1 f(ρ, P ) = 1
P

which tends to 0 as P grows to infinity. Nevertheless, we use part (i) to prove
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1
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1
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Fig. 2. An example of a function f : [0, 1]× (1,∞)→ [0, 1] such that limP→∞ f(ρ, P ) = 10≤ρ<1, however, argmin0≤ρ≤1 f(ρ, P ) = 1
P

which tends to 0 as P grows to infinity.

part (ii). �

Motivated by Theorem 1, we fix ρ = 1 under TIN and CI and ρ = 0 under JD in order to compute the

outage probability under the assumption that the channel coefficients represent Rayleigh fading:

Theorem 2 Let all the channel coefficients be independent and the direct and crossover channel coeffi-

cients be realizations of CN (0, 1) and CN (0, σ2), respectively. For any 0 ≤ r < 1,

P
(
O(TIN)(1, r, P )

)
= 4P−(1−r) + o

(
P−(1−r)

)
(13)

and

P
(
O(CI)(1, r, P )

)
=

4

σ2
P−(1−r) + o

(
P−(1−r)

)
. (14)

Moreover,

P(O(JD)(0, r, P )) ≤ 8(2− r)P−(2−r) lnP + o(P−(2−r) lnP ), (15)

for 0 ≤ r < 2
3

and

P(O(JD)(0, r, P )) ≤ 32

σ4
(1− r)P−4(1−r) lnP + o(P−4(1−r) lnP ), (16)

for 2
3
< r < 1.

Proof: See Section VII.

It is worth mentioning that if the two users are orthogonal, i.e., user 1 only transmits over GIC 1 and

user2 only transmits over GIC2, the outage probability scales like 2P−(1−r)+o(P−(1−r)) [26]. Comparing
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this with the performance under JD in Theorem 2 verifies the advantage of transmitting over both GICs

compared to avoiding interference.

In Section VIII, we investigate the effect of difference in distribution for the direct and crossover channel

coefficients on the value of ρ. Due to simplicity of the receiver structure and lower complexity of system

design, we only consider a scenario where the receivers treat interference as noise. Motivated by the fact

that ρ = 0 is optimal if the crossover channel coefficients are zero, i.e., users do not interfere with each

other, we explore conditions such that ρ = 0 is still optimal in the presence of interference. A typical

scenario for the setup considered in this article corresponds to a cellular system where distant cells cause

interference to each other. We raise the following question:

Assume the interfering users are distant enough so that the crossover channel gain σ2 and SNR level

P satisfy P 1+εσ2 < 1 for some fixed ε > 0. What is the optimum value of ρ?

This question is answered in Proposition 3 in the asymptote of large P . We consider a sequence of

PGICs where the SNR and the crossover channel gain in the PGIC of index n are Pn and σ2
n, respectively,

such that P 1+ε
n σ2

n < 1 for any n ≥ 1. Then we study the outage probability in terms of ρ assuming Pn

grows to infinity as the index n grows. The condition P 1+εσ2 < 1 in the question above can be replaced

by Pσ2 < o(1) where o(1) is any function of P that vanishes as P grows to infinity. For example, one

can replace P 1+εσ2 < 1 by Pσ2 < 1
lnP

. The assumption limn→∞ Pnσ
2
n = 0 in Theorem 3 includes all such

cases. In Proposition 3, it is shown that for 0 ≤ ρ < 1, the outage probability vanishes for any 0 ≤ r < 2

as n grows. However, if ρ = 1, the outage probability vanishes for 0 ≤ r < 1, but approaches 1 for any

1 < r < 2 as n tends to infinity.

Finally, Section IX offers analogous results as in Theorem1 and Theorem2 for a two-user PGIC with an

arbitrary number N ≥ 2 of parallel GICs where the receivers treat interference as noise. In Proposition 2,

it is shown that the probability of the achievable rate per user having a local minimum at ρ = 0 approaches

1 in the asymptote of large P . In Proposition 3, the outage probability is computed for ρ = 1 assuming

the channel coefficients represent Rayleigh fading. It is verified that the outage probability is given by

2NN−1

(N−1)!P
−(N−1)(1−r) + o(P−(N−1)(1−r)) for any 0 ≤ r < 1. This simplifies to (13) for N = 2.

Remark 3- For simplicity of presentation, we drop the index i and show ai,j and bi,j by aj and bj ,

respectively, throughout the rest of the paper. It is always clear from the context that the omitted index i

is i = 1 or i = 2. �
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IV. PROOF OF THEOREM 1 FOR S = TIN

Assuming users treat each other as Gaussian noise, an achievable rate for user 1 is given by [27]

R(TIN)(ρ, P,H1) = log
det(cov(~y1))

det(cov(B1 ~x2 + ~z1))
. (17)

This can be expanded as

R(TIN)(ρ, P,H1) = log
α(P,H1)− β(P,H1)|ρ|2
γ(P,H1)− δ(P,H1)|ρ|2

, (18)

where
α(P,H1) = (1 + P

2
(|a1|2 + |b1|2))(1 + P

2
(|a2|2 + |b2|2))

β(P,H1) = P 2

4
|a1a∗2 + b1b

∗
2|2

γ(P,H1) = (1 + P
2
|b1|2)(1 + P

2
|b2|2)

δ(P,H1) = P 2

4
|b1|2|b2|2

. (19)

By (18), we can assume 0 ≤ ρ ≤ 1 without loss of generality. By Assumption 2, H1 and H2 are in-

dependent and hence, P(O(TIN)(ρ, r, P )) = P(R(TIN)(ρ, P,H1) ≤ r logP or R(TIN)(ρ, P,H2) ≤ r logP )

can be expanded as in (8). Next, let us observe the following:

• If limP→∞ P(R(TIN)(ρ, P,H i) ≤ r logP ) = 10≤ρ<1 for i = 1, 2, then limP→∞ P(O(TIN)(ρ, r, P )) =

10≤ρ<1 as well.

• The function (x, y) 7→ x + y − xy for 0 ≤ x, y ≤ 1 is increasing in terms of x and y separately.

Therefore, if we can show that the value of ρ minimizing pi = P(R(TIN)(ρ, P,H i) ≤ r logP )

approaches 1 as P grows to infinity regardless of i = 1, 2, then the value of ρ minimizing p1+p2−p1p2
also approaches 1 as P increases.

Therefore, it is enough to show that parts (i) and (ii) in Theorem1 hold for P(R(TIN)(ρ, P,H1) ≤ r logP )

and P(R(TIN)(ρ, P,H2) ≤ r logP ) in place of P(O(TIN)(ρ, r, P )). Here, we only consider i = 1 as the

case i = 2 is treated similarly.

(i) Proof of part (i) in Theorem 1 for S = TIN: We consider the cases ρ = 1 and ρ < 1 separately:

• Setting ρ = 1 in (18),

R(TIN)(1, P,H1) = log

(
1 +

P
2

(|a1|2 + |a2|2) + P 2

4
| det(H1)|2

1 + P
2

(|b1|2 + |b2|2)

)
. (20)

Since b1, b2, det(H1) 6= 0, then limP→∞
R(TIN)(1,P,H1)

logP
= 1. This shows that R(TIN)(1, P,H1)−R
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scales like (1− r) logP as P grows to infinity. Since 0 ≤ r < 1, we get

lim
P→∞

1R(TIN)(1,P,H1)≤r logP = 0. (21)

• For ρ < 1 one can write R(TIN)(ρ, P,H1) in (18) as

R(TIN)(ρ, P,H1) = log
1 + P

2
c+ P 2

4
((|a1|2 + |b1|2)(|a2|2 + |b2|2)− ρ2|a1a∗2 + b1b

∗
2|2)

1 + P
2

(|b1|2 + |b2|2) + P 2

4
|b1|2|b2|2(1− ρ2)

, (22)

where c = |a1|2 + |a2|2 + |b1|2 + |b2|2. We have (|a1|2 + |b1|2)(|a2|2 + |b2|2)− |a1b
∗
2 +a2b

∗
1|2 =

|a1b2−a2b1|2 = | det(H1)|2 > 0. Since ρ < 1, we get (|a1|2 + |b1|2)(|a2|2 + |b2|2)−ρ2|a1b
∗
2 +

a2b
∗
1|2 > 0 as well. By assumption, b1, b2 6= 0 and hence, (1 − ρ2)|b1|2|b2|2 > 0. Therefore,

R(TIN)(ρ, P,H1) does not scale with logP , i.e., R(TIN)(ρ, P,H1)−r logP scales like −r logP .

As such,

lim
P→∞

1R(TIN)(ρ,P,H1)≤r logP = 1. (23)

Using (21) and (23) together with dominated convergence [28], the proof of (i) is complete.

(ii) Proof of part (ii) in Theorem 1 for S = TIN: Let us denote the value of ρ that minimizes

P(R(TIN)(ρ, P,H1) ≤ r logP ) by ρ(TIN)
1 (r, Pn). Based on the remark in Footnote 3, it is enough to

show that

lim
n→∞

ρ
(TIN)
1 (r, Pn) = 1, (24)

where Pn is an arbitrary increasing and unbounded sequence of positive real numbers. Let us fix

0 < ε < 1. Since any probability measure on C4 is compact-regular [28], one can find a compact

set Hε ⊆ C4 such that P(vec(H1) ∈ Hε) ≥ ε where vec(H1) is a vector obtained by stacking the

columns of H1 in a single column. Then

P
(
R(TIN)(ρ, Pn,H1) ≤ r logPn

)
≥ P

(
R(TIN)(ρ, Pn,H1) ≤ r logPn, vec(H1) ∈ Hε

)
= P

(
R(TIN)(ρ, Pn,H1) ≤ r logPn | vec(H1) ∈ Hε

)
P(vec(H1) ∈ Hε)

≥ εP
(
R(TIN)(ρ, Pn,H1) ≤ r logPn | vec(H1) ∈ Hε

)
. (25)

Let us define

pn(ρ) = P
(
R(TIN)(ρ, Pn,H1) ≤ r logPn | vec(H1) ∈ Hε

)
, 0 ≤ ρ ≤ 1. (26)
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We note the following:

(a) pn(ρ) is continuous in terms of ρ for any n. This follows from similar lines of reasoning after (7)

where we verified continuity of P(R(TIN)(ρ, P,H1) ≤ r logP ) in terms of ρ.

(b) There is Nε ≥ 1 such that for n ≥ Nε, pn+1(ρ) ≥ pn(ρ) for any 0 ≤ ρ ≤ ε. To see this, we

observe that ∂
∂P

(
R(TIN)(ρ, P,H1)− r logP

)
< 0 if and only if

µ4(ρ, r,H1)P
4 + µ3(ρ, r,H1)P

3 + µ2(ρ, r,H1)P
2 + µ1(ρ, r,H1)P − r < 0, (27)

where µi(ρ, r,H1) for i = 1, 2, 3, 4 are polynomials in terms of r, ρ and real and imaginary

parts of the channel coefficient. In particular, µ4(ρ, r,H1) = −r
(
(|a1|2 + |b1|2)(|a2|2 + |b2|2)−

ρ2|a1a
∗
2 +b1b

∗
2|2
)
|b1|2|b2|2(1−ρ2). Since µ4(ρ, r,H1) is the coefficient of P 4 which is the term

with the largest exponent of P on the left side of (27) and µ4(ρ, r,H1) < 0, it follows that

there is P (ρ, r,H1) > 0 such that for P > P (ρ, r,H1), the inequality in (27) is valid. Since

the roots of any polynomial are continuous functions of the coefficients of that polynomial,

P (ρ, r,H1) is a continuous function of µis and hence, it is a continuous function of ρ and H1.

As [0, ε] × Hε is compact, sup0≤ρ≤ε,vec(H1)∈Hε P (ρ, r,H1) is finite and one can find Nε ≥ 1

so that Pn > sup0≤ρ≤ε,vec(H1)∈Hε P (ρ, r,H1) holds for any n ≥ Nε. Then it is guaranteed that

the sequence R(TIN)(ρ, Pn,H1) − r logPn is decreasing in terms of n as long as 0 ≤ ρ ≤ ε,

H1 ∈ Hε and n ≥ Nε. In turn, it follows that pn(ρ) ≤ pn+1(ρ) for any 0 ≤ ρ ≤ ε and n ≥ Nε,

as claimed.

(c) By part (i) of Theorem 1, limn→∞ pn(ρ) = 1 for any 0 ≤ ρ ≤ ε.

Putting these three observations together, pn(·) for n ≥ Nε is an increasing sequence of continuous

functions (in terms of ρ) that converges point-wise to the constant 1 over the compact interval [0, ε].

Applying Dini’s uniform convergence lemma [29], this point-wise convergence is indeed uniform,

i.e.,

lim
n→∞

inf
0≤ρ≤ε

pn(ρ) = 1. (28)

By (28), there exists N ′ε ≥ 1 such that if n ≥ N ′ε, then inf0≤ρ≤ε pn(ρ) > ε. Using this fact together

with (25), we obtain

inf
0≤ρ≤ε

P
(
R(TIN)(ρ, Pn,H1) ≤ r logPn

)
≥ ε inf

0≤ρ≤ε
pn(ρ) ≥ ε2, (29)
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for any n ≥ N ′ε. Moreover, by part (i) in Theorem 1, there exists N ′′ε ≥ 1 such that if n ≥ N ′′ε ,

P
(
R(TIN)(1, Pn,H1) ≤ r logPn

)
< ε2. (30)

Combining (29) and (30), we conclude that for n ≥ max{N ′ε, N ′′ε },

ρ
(TIN)
1 (r, Pn) > ε. (31)

Since 0 < ε < 1 is arbitrary, (31) is equivalent to (24). This completes the proof of part (ii).

V. PROOF OF THEOREM 1 FOR S = CI

Under interference cancellation, receiver 1 proceeds according to the following steps:

1) Receiver 1 decodes the message of user 2 by treating its own signal as additive Gaussian noise.

To guarantee successful decoding of interference, the transmission rate of user 2 must be less than

R′(ρ, P,H1) defined as

R′(ρ, P,H1) , log
det(cov(~y1))

det(cov(A1~x1 + ~z1))

= log
α(P,H1)− β(P,H1)|ρ|2
γ′(P,H1)− δ′(P,H1)|ρ|2

, (32)

where α(P,H1) and β(P,H1) are given in (19) and

γ′(P,H1) = (1 + P
2
|a1|2)(1 + P

2
|a2|2)

δ′(P,H1) = P 2

4
|a1|2|a2|2

. (33)

2) After cancelling the additive interference, receiver1 decodes its own message. To guarantee successful

decoding in this step, the transmission rate of user 1 must be less than R′′(ρ, P,H1) defined as

R′′(ρ, P,H1) , log
det(cov(A1~x1 + ~z1))

det(cov(~z1))

= log
(
γ′(P,H1)− δ′(P,H1)|ρ|2

)
. (34)

Recalling that the actual transmission rate per user is r logP , receiver 1 successfully decodes the message

sent by transmitter 1 if

r logP < R(CI)(ρ, P,H1), (35)
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where

R(CI)(ρ, P,H1) = min
{
R′(ρ, P,H1), R

′′(ρ, P,H1)
}
. (36)

Note that one can restrict 0 ≤ ρ ≤ 1. By Assumption 2, H1 and H2 are independent and hence,

P(O(TIN)(ρ, r, P )) = P(R(CI)(ρ, P,H1) ≤ r logP or R(CI)(ρ, P,H2) ≤ r logP ) can be expanded as in(8).

Following similar lines of reasoning presented after (19) at the beginning of SectionIV, it is enough to show

that parts (i) and (ii) in Theorem1 hold for P(R(CI)(ρ, P,H1) ≤ r logP ) and P(R(CI)(ρ, P,H2) ≤ r logP )

instead of P(O(CI)(ρ, r, P )). Here, we only consider i = 1 as the case i = 2 is treated similarly.

(i) Proof of part (i) in Theorem 1 for S = CI: We consider the cases ρ = 1 and ρ < 1 separately:

• If ρ = 1,

R′(1, P,H1) = log

(
1 +

P
2

(|b1|2 + |b2|2) + P 2

4
| det(H1)|2

1 + P
2

(|a1|2 + |a2|2)

)
(37)

and

R′′(1, P,H1) = log

(
1 +

P

2
(|a1|2 + |a2|2)

)
. (38)

As a1,a2, det(H1) 6= 0, both R′(1, P,H1) and R′′(1, P,H1) scale like logP and therefore,

R(CI)(1, P,H1)− r logP scales like (1− r) logP . This yields

lim
P→∞

1R(CI)(1,P,H1)≤r logP = 0. (39)

• If 0 ≤ ρ < 1, R′(ρ, P,H1) is given by the expression on the right side of (22) with a1 and a2,

replaced by b1 and b2, respectively and vice versa. Following a similar reasoning to the one after

(22), we conclude that R′(ρ, P,H1) does not scale with logP . Moreover,

R′′(ρ, P,H1) = log

(
1 +

P

2
(|a1|2 + |a2|2) +

P 2

4
|a1|2|a2|2(1− ρ2)

)
. (40)

Since a1,a2 6= 0, then R′′(ρ, P,H1) scales like 2 logP and hence, R(CI)(ρ, P,H1) − r logP

scales like −r logP . This yields

lim
P→∞

1R(CI)(ρ,P,H1)≤r logP = 1. (41)

Using (39) and (41) together with dominated convergence [28], the proof of part (i) is complete.

(ii) Proof of part (ii) in Theorem 1 for S = CI: We start with the following lemma:
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Lemma 1 For any 0 < ε < 1,

lim
P→∞

P
(
R(CI)(ρ, P,H1) = R′(ρ, P,H1) for any 0 ≤ ρ ≤ ε

)
= 1. (42)

Proof: See Appendix A.

Let Pn be an arbitrary increasing and unbounded sequence of positive real numbers. By Lemma 1,

for any 0 < ε < 1, there exists Nε ≥ 1 such that if n ≥ Nε, then

P
(
R(CI)(ρ, Pn,H1) = R′(ρ, Pn,H1) for any 0 ≤ ρ ≤ ε

)
≥ ε. (43)

In particular, this yields P
(
R(CI)(ρ, Pn,H1) = R′(ρ, Pn,H1)

)
≥ ε for any 0 ≤ ρ ≤ ε and n ≥ Nε

and hence,

inf
0≤ρ≤ε

P
(
R(CI)(ρ, Pn,H1) = R′(ρ, Pn,H1)

)
≥ ε, n ≥ Nε. (44)

Let us write

P
(
R(CI)(ρ, Pn,H1) ≤ r logPn

)
≥ P

(
R(CI)(ρ, Pn,H1) ≤ r logPn, R

(CI)(ρ, Pn,H1) = R′(ρ, Pn,H1)
)

= P
(
R′(ρ, Pn,H1) ≤ r logPn, R

(CI)(ρ, Pn,H1) = R′(ρ, Pn,H1)
)

≥ P
(
R(CI)(ρ, Pn,H1) ≤ r logPn

)
+P
(
R(CI)(ρ, Pn,H1) = R′(ρ, Pn,H1)

)
− 1, (45)

where the last step follows by the bound P(E ⋂F) ≥ P(E) + P(F) − 1 for any two events E and

F . By (45) and for any n ≥ Nε,

inf
0≤ρ≤ε

P
(
R(CI)(ρ, Pn,H1) ≤ r logPn

)
≥ inf

0≤ρ≤ε
P
(
R′(ρ, Pn,H1) ≤ r logPn

)
+ inf

0≤ρ≤ε
P
(
R(CI)(ρ, Pn,H1) = R′(ρ, Pn,H1)

)
− 1

≥ inf
0≤ρ≤ε

P
(
R′(ρ, Pn,H1) ≤ r logPn

)
+ ε− 1, (46)

where the last step is due to (44). Due to similarity of R′(ρ, Pn,H1) and R(TIN)(ρ, Pn,H1), one

can use (29) to conclude that there exists N ′ε ≥ 1 such that

inf
0≤ρ≤ε

P
(
R′(ρ, Pn,H1) ≤ r logPn

)
≥ ε2, (47)
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R′

R′′ R1

R2

(r logP, r logP )

R′ +R′′

R′ +R′′ −R(TIN)

R(TIN)

Fig. 3. Achievable region for the multiple access channel from the two transmitters to receiver 1. The constraint R2 < R′(ρ, P,H1) +
R′′(ρ, P,H1) − R(TIN)(ρ, P,H1) on the transmission rate of user 2 is immaterial as it concerns the event that only the message sent by
transmitter 2 is decoded incorrectly by receiver 1.

for any n ≥ N ′ε. Putting (46) and (47) together,

inf
0≤ρ≤ε

P
(
R(CI)(ρ, Pn,H1) ≤ r logPn

)
≥ ε2 + ε− 1. (48)

Let ε >
√
5−1
2

so that ε2 + ε− 1 > 0. By part (i) in Theorem 1, there exists N ′′ε ≥ 1 such that

P
(
R(CI)(1, Pn,H1) ≤ r logPn

)
< ε2 + ε− 1, (49)

for any n ≥ N ′′ε . Comparing (48) and (49) and assuming n ≥ max{Nε, N
′
ε, N

′′
ε }, the value of ρ that

minimizes P
(
R(CI)(ρ, Pn,H1) ≤ r logPn

)
is larger than ε. Since this is true for any

√
5−1
2

< ε < 1,

the proof is complete by letting ε approach 1.

VI. PROOF OF THEOREM 1 FOR S = JD

Denoting the transmission rate of user i by Ri, the achievable region of the multiple access channel

from the two transmitters to receiver 1 is given by
R1 < R′′(ρ, P,H1)

R2 < R′(ρ, P,H1) +R′′(ρ, P,H1)−R(TIN)(ρ, P,H1)

R1 +R2 < R′(ρ, P,H1) +R′′(ρ, P,H1)

. (50)
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From the viewpoint of receiver 1, the second constraint in (50) is immaterial as it concerns the event that

only the message sent by transmitter 2 is decoded incorrectly. As such, the rate region under JD is R1 < R′′(ρ, P,H1)

R1 +R2 < R′(ρ, P,H1) +R′′(ρ, P,H1)
, (51)

as shown in Fig. 3. Since R1 = R2 = r logP , (51) can be written as

r logP < R(JD)(ρ, P,H1) = min
{
R′′(ρ, P,H1),

1

2

(
R′(ρ, P,H1) +R′′(ρ, P,H1)

)}
= min

{
log(γ′(P,H1)− δ′(P,H1)|ρ|2),

1

2
log(α(P,H1)− β(P,H1)|ρ|2)

}
.

(52)

It is seen that R(JD)(ρ, P,H1) attains its maximum at ρ = 0 regardless of P > 1 and H1. Setting ρ = 0

in (52),

r logP < R(JD)(0, P,H1) = min
{

log γ′(P,H1),
1

2
logα(P,H1)

}
. (53)

VII. PROOF OF THEOREM 2

Define the random matrix W by

W =

 w w′

w′∗ w′′

 = diag(1, σ−1)H†1H1diag(1, σ−1), (54)

i.e.,
w = |a1|2 + |a2|2

w′ = σ−1 (a∗1b1 + a∗2b2)

w′′ = σ−2 (|b1|2 + |b2|2)

. (55)

Then W is a complex Wishart W2(2, I2) random matrix [32] with distribution

pW (W ) =


1
π

exp(−(w + w′′)) ww′′ > |w′|2

0 otherwise
(56)

A. Treating interference as noise

By (20) and noting that the elements of H1 are independent circularly symmetric complex Gaussian

random variables, we conclude that R(TIN)(1, P,H1) and log
(

1 +
P
2
w+P2

4
σ2|w′|2

1+P
2
σ2w′′

)
are identically dis-

tributed. In fact, replacing a1,a2, b1 and b2 by a∗1,a
∗
2,−b2 and b1, respectively, R(TIN)(1, P,H1) turns
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into log
(

1 +
P
2
w+P2

4
σ2|w′|2

1+P
2
σ2w′′

)
. As such, as long as distribution of R(TIN)(1, P,H1) is concerned, we can

write

R(TIN)(1, P,H1) = log

(
1 +

P
2
w + P 2

4
σ2|w′|2

1 + P
2
σ2w′′

)
. (57)

Let us define

f(w,w′′) =
2

σ2P

(
2

P
(P r − 1)

(
1 +

P

2
σ2w′′

)
− w

)+

, w, w′′ ≥ 0. (58)

Then

P
(
R(TIN)(1, P,H1) ≤ r logP

)
= P

(
|w′|2 ≤ f(w,w′′)

)
(a)
=

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

1

π
e−(w+w

′′)1s2+t2≤min{ww′′,f(w,w′′)}ds dt dw dw′′

=

∫ ∞
0

∫ ∞
0

1

π
e−(w+w

′′)

∫ ∞
−∞

∫ ∞
−∞

1s2+t2≤min{ww′′,f(w,w′′)}ds dt dw dw′′

(b)
=

∫ ∞
0

∫ ∞
0

min{ww′′, f(w,w′′)}e−(w+w′′)dw dw′′, (59)

where in (a), s and t represent Re(w′) and Im(w′), respectively, and (b) is due to∫∫
(s,t):s2+t2≤min{ww′′,f(w,w′′)}

ds dt = πmin{ww′′, f(w,w′′)}. (60)

We have f(w,w′′) > 0 and min{ww′′, f(w,w′′)} = ww′′ if and only if w < g(w′′) and w ≤ g(0),

respectively, where

g(w′′) =
2

P
(P r − 1)

(
1 +

P

2
σ2w′′

)
, w′′ ≥ 0. (61)

As such, one can write (59) as

P
(
R(TIN)(1, P,H1) ≤ r logP

)
=

∫ ∞
0

∫ g(0)

0

ww′′e−(w+w
′′)dw dw′′

+

∫ ∞
0

∫ g(w′′)

g(0)

f(w,w′′)e−(w+w
′′)dw dw′′. (62)

But, ∫ ∞
0

∫ g(0)

0

ww′′e−(w+w
′′)dw dw′′ = 1− (1 + g(0))e−g(0) (63)

and ∫ ∞
0

∫ g(w′′)

g(0)

f(w,w′′)e−(w+w
′′)dw dw′′ =

σ2(P r − 1)

1 + σ2(P r − 1)
g(0)e−g(0). (64)
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Putting (62), (63) and (64) together,

P
(
R(TIN)(1, P,H1) ≤ R

)
= 1−

(
1 +

2
P

(P r − 1)

1 + σ2(P r − 1)

)
e−

2
P
(P r−1)

= 2P−(1−r) + o(P−(1−r)). (65)

B. Interference cancellation

Following similar lines of reasoning that led us to (57), we can write

R′(1, P,H1) = log

(
1 +

P
2
σ2w′′ + P 2

4
σ2|w′|2

1 + P
2
w

)
(66)

We also have

R′′(1, P,H1) = log
(

1 +
P

2
w
)
. (67)

Defining

f(w,w′′) =
2

σ2P

(
2

P
(P r − 1)

(
1 +

P

2
w
)
− σ2w′′

)+

, w, w′′ ≥ 0. (68)

We have R′(1, P,H1) ≤ R if and only if |w′|2 ≤ f(w,w′′). Then

P(R(CI)(1, P,H1) ≤ r logP ) = P(min{R′(1, P,H1), R
′′(1, P,H1)} ≤ r logP )

= P(R′′(1, P,H1) ≤ r logP )

+P(R′′(1, P,H1) > r logP,R′(1, P,H1) ≤ r logP )

= P
(
w ≤ 2

P
(P r − 1)

)
+ P

(
w >

2

P
(P r − 1), |w′|2 ≤ f(w,w′′)

)
.

(69)

The first term on the right side of (69) is given by

P
(
w ≤ 2

P
(P r − 1)

)
= 1−

(
1 +

2

P
(P r − 1)

)
e−

2
P
(P r−1). (70)

Let

g(w) =
2

σ2P
(P r − 1)

(
1 +

P

2
w
)
, w ≥ 0. (71)
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Noting that 2
P

(P r − 1) = σ2g(0) and by similar lines of reasoning in (59) and (62),

P
(
w >

2

P
(P r − 1), |w′|2 ≤ f(w,w′′)

)
=

∫ ∞
0

∫ ∞
0

1w>σ2g(0) min{ww′′, f(w,w′′)}e−(w+w′′)dw′′ dw

=

∫ ∞
σ2g(0)

∫ g(0)

0

ww′′e−(w+w
′′)dw′′ dw +

∫ ∞
σ2g(0)

∫ g(w)

g(0)

f(w,w′′)e−(w+w
′′)dw′′ dw. (72)

We have∫ ∞
σ2g(0)

∫ g(0)

0

ww′′e−(w+w
′′)dw′′ dw =

(
1− (1 + σ2g(0))e−σ

2g(0)
)
(1− (1 + g(0))e−g(0))

=
4

σ4
P−4(1−r) + o(P−4(1−r)), (73)

and ∫ ∞
σ2g(0)

∫ g(w)

g(0)

f(w,w′′)e−(w+w
′′)dw′′ dw

=

(
4

σ2P 2

(
(P r − 1)2 +

P

2
(P r − σ2 − 1)

)
+

2σ2

P (P r + σ2 − 1)
e−

2
σ2P

(P r−1)2
)
e−

2
P

(
1+ 1

σ2

)
(P r−1)

=
2

σ2
P−(1−r) + o(P−(1−r)). (74)

By (72), (73) and (74), the scaling under CI is 2
σ2P

−(1−r) + o(P−(1−r)) as desired.

C. Joint decoding

By (53) and using the union bound,

P(R(JD)(0, P,H1) ≤ r logP ) ≤ P(γ′(P,H1) ≤ P r) + P(α(P,H1) ≤ P 2r). (75)

We need the following lemmas:

Lemma 2 Let Ψ1 and Ψ2 be the cumulative distribution functions of |a1|2|a2|2 and (|a1|2+ |b1|2)(|a2|2+

|b2|2), respectively. Then

Ψ1(v) = 1− 2
√
v K1(2

√
v), v > 0 (76)

and

Ψ2(v) =

 1− 2vK0(2
√
v)− 2

√
v(1 + v)K1(2

√
v) σ2 = 1

1− 2
(σ2−1)2

(
σ2
√
vK1

(
2
σ2

√
v
)
− 2σ

√
vK1

(
2
σ

√
v
)

+
√
vK1(2

√
v)
)

σ2 6= 1
. (77)
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where Kn(·) is the modified Bessel function of the second kind of order n.

Proof: See Appendix B.

Lemma 3 In the asymptote of small v,

Ψ1(v) = −v ln v + o(v ln v) (78)

and

Ψ2(v) = − 1

2σ4
v2 ln v + o(v2 ln v). (79)

Proof: See Appendix C.

The two terms on the right side of (75) do not admit closed form expressions. In what follows, we derive

an upper bound on each of these terms:

• The term P(γ′(P,H1) ≤ P r): By (33),

P(γ′(P,H1) ≤ P r) = P
((

1 +
P

2
|a1|2

)(
1 +

P

2
|a2|2

)
≤ P r

)
≤ P

(
1 +

P 2

4
|a1|2|a2|2 ≤ P r

)
= P

(
|a1|2|a2|2 ≤

4

P 2
(P r − 1)

)
= Ψ1

( 4

P 2
(P r − 1)

)
, (80)

where Ψ1 is given by (76) in Lemma 2.

• The term P(α(P,H1) ≤ P 2r): By (33),

P(α(P,H1) ≤ P 2r) = P
((

1 +
P

2
(|a1|2 + |b1|2)

)(
1 +

P

2
(|a2|2 + |b2|2)

)
≤ P 2r

)
≤ P

(
1 +

P 2

4
(|a1|2 + |b1|2)(|a2|2 + |b2|2) ≤ P 2r

)
= P

(
(|a1|2 + |b1|2)(|a2|2 + |b2|2) ≤

4

P 2
(P 2r − 1)

)
= Ψ2

( 4

P 2
(P 2r − 1)

)
, (81)

where Ψ2 is given by (77) in Lemma 2.
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Using (80) and (78), we get

P(γ′(P,H1) ≤ P r) ≤ 4(2− r)P−(2−r) lnP + o(P−(2−r) lnP ), (82)

in the asymptote of large P . Similarly, by (81) and (79),

P(α(P,H1) ≤ P 2r) ≤ 16

σ4
(1− r)P−4(1−r) lnP + o(P−4(1−r) lnP ). (83)

VIII. INTERACTION BETWEEN P AND σ2: ρ = 0 VS. ρ = 1

Let us consider the scenario in Theorem 2 where the direct and crossover channel coefficients are

realizations of independent CN (0, 1) and CN (0, σ2) random variables, respectively. In this section, we

study the interaction between σ2 and P in determining the optimum choice of ρ. By Theorem 1, ρ = 1 is

the best choice as P grows to infinity as long as σ > 0, whether the receivers apply TIN or CI. Moreover,

it is clear that if σ = 0, transmitting independent Gaussian signals over the underlying GICs maximizes the

achievable rate per user, i.e., the outage probability is minimized for ρ = 0 regardless of the value of P .

Motivated by this fact, we assume σ2 is not zero, but it is a small number. In particular, we are interested

in 0 < σ2 < 1. A typical scenario for this setup corresponds to a cellular system where distant cells cause

interference to each other. We raise the question that given an arbitrary 0 < σ2 < 1, what the largest SNR

level Pmax is such that P < Pmax guarantees ρ = 0 outperforms ρ = 1, while ρ = 1 is superior to ρ = 0

for P > Pmax. Due to simplicity of the receiver structure and lower complexity of system design, only

receivers that perform TIN are studied in this section. Moreover, cancelling interference or joint decoding

require a certain level of coordination among distant cells which will be practically difficult.

To determine Pmax, the exact probability of outage for ρ = 0 is computed in Appendix D as

P
(
R(TIN)(0, P,H1) ≤ r logP

)
=

∫ P r

1

(
2

P
+

σ2

1 + σ2(x− 1)

)(
1− e−

2
P (P

r

x
−1)

1 + σ2(P
r

x
− 1)

)
e−

2
P
(x−1)

1 + σ2(x− 1)
dx. (84)

One may use (84) and the expression for P (R(1, P,H1) ≤ r logP ) in (65) to determine Pmax for given

σ2 and r. Fig. 4 presents plots of the exact value of the outage probability in terms of P (dB) for ρ = 0

and ρ = 1. In panel (a), r = 0.5 and σ2 = 0.1 and in panel (b), r = 0.5 and σ2 = 0.01.

Next, we consider a scenario where the optimum choice of ρ is equal to 0 in the asymptote of large P .

We study a sequence of PGICs indexed by positive integers n = 1, 2, · · · such that the SNR and variance
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Fig. 4. Plots of the exact value of P (R(ρ, P,H1) ≤ r logP ) in terms of P (dB) for ρ = 1 and ρ = 0 given in (65) and (84), respectively.
In panel (a), r = 0.5 and σ2 = 0.1 and in panel (b), r = 0.5 and σ2 = 0.01. It is seen that for a given σ2, the choice of ρ = 0 outperforms
ρ = 1 if SNR is sufficiently small.

of crossover channel coefficients increase and decrease by n, respectively, such that their product is Pnσ2
n

tends to zero. The following result shows that the optimum ρ is 0 as the index n grows to infinity:

Theorem 3 Consider a sequence of two-user PGICs with two underlying GICs where the SNR, trans-

mission rate per user and channel matrix to receiver i in the nth PGIC are given by Pn, r logPn and

H i,n =

ai,1 bi,1

ai,2 bi,2

 diag(1, σi,n), respectively, where the matrices H i,n obey Assumption 2 in Section III.

The direct channel coefficients are the same in all PGICs, however, the crossover channel coefficients in

the nth PGIC are σi,n times those of the PGIC of index n = 1. If limn→∞ Pn =∞ and limn→∞ Pnσ
2
i,n = 0,

then limn→∞ P(R(TIN)(ρ, Pn,H i,n) ≤ r logPn) = 0 under each of the following conditions:

• 0 ≤ ρ < 1 and 0 ≤ r < 2.

• ρ = 1 and 0 ≤ r < 1.

Moreover, limn→∞ P(R(TIN)(1, Pn,H i,n) ≤ r logPn) = 1 if r > 1.

Proof: See Appendix E.

As mentioned earlier, in the extreme case of σ = 0, ρ = 0 is the optimal choice regardless of SNR and

transmission rate. We end this section with the following Proposition that offers an expression for the

outage probability in this case:

Proposition 1 If σ = 0, the outage probability is given by 1− e 2
P
(P r−1)− 2

P
e

4
P

∫ P r
1

e−
2
P
(P

r

x
+x)dx for any

0 ≤ r < 2.
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Proof: P((R(TIN)(0, P,H1) ≤ r logP ) is given in (84) for arbitrary σ2 > 0. Putting σ = 0 in the

expression of R(0, P,H1) in (22) yields the achievable rate per user in the interference-free setup where

crossover channel coefficients are zero. As such, one can use dominated convergence [28] to conclude

that the outage probability for σ = 0 is given by

lim
σ→0

P
(
R(TIN)(0, P,H1) ≤ r logP

)
= lim

σ→0

∫ P r

1

(
2

P
+

σ2

1 + σ2(x− 1)

)(
1− e−

2
P (P

r

x
−1)

1 + σ2(P
r

x
− 1)

)
e−

2
P
(x−1)

1 + σ2(x− 1)
dx. (85)

If σ < 1, the integrand of the integral on the right side of (85) is bounded from above by the integrable

function ( 2
P

+ 1)
(
1− x

P r
e−

2
P
(P

r

x
−1))e− 2

P
(x−1) for 1 ≤ x ≤ P r. Invoking dominated convergence [28] one

more time,

lim
σ→0

P
(
R(TIN)(0, P,H1) ≤ r logP

)
=

2

P

∫ P r

1

(
1− e− 2

P (P
r

x
−1)
)
e−

2
P
(x−1)dx

= 1− e 2
P
(P r−1) − 2

P
e

4
P

∫ P r

1

e−
2
P
(P

r

x
+x)dx. (86)

IX. EXTENSION TO N > 2 PARALLEL GICS

In this section, we extend the result of Theorem 2 to a two-user PGIC with N > 2 underlying GICs.

For simplicity of presentation, we only consider the case where the receivers apply TIN. The received

vector in one transmission slot at receiver 1 is given by

~y1 = A~x1 +B~x2 + ~z1, (87)

where

A = diag(a1, · · · , aN), B = diag(b1, · · · , bN), (88)

aj and bj are the direct and crossover channel coefficients in GIC j, ~xi is the N × 1 vector of signals

transmitted by user i and ~z1 ∼ CN (~0N , IN) is the ambient noise vector at the receiver of user 1. It is

assumed that

~xi ∼ CN
(
~0N ,

P

N
Cρ

)
, (89)
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where Cρ = ρ~1N~1
t
N + (1− ρ)IN is a N ×N covariance matrix in which all diagonal elements are 1 and

all off-diagonal elements are equal to the real number − 1
N+1

≤ ρ ≤ 1. This specific range for ρ is to

ensure all eigenvalues of Cρ are nonnegative. Under TIN, the achievable rate by user 1 is given by

R(TIN)(ρ, P,H1) = log
det
(
IN + P

N
ACρA

† + P
N
BCρB

†)
det
(
IN + P

N
BCρB†

) , (90)

where

H1 =


a1 b1
...

...

aN bN

 . (91)

One can make the following observations regarding R(TIN)(ρ, P,H1) as a function of ρ:

• Had we defined Cρ as a matrix whose diagonal elements are 1 and the elements above and below

the main diagonal are ρ and ρ∗ for some complex number ρ, respectively, then it is easy to see that

R(TIN)(ρ, P,H1) does not just depend on |ρ| for N > 2. This is in contrast to the case of N = 2

where R(TIN)(ρ, P,H1) is only a function of |ρ| and hence, one can assume ρ is real without loss of

generality. Here, we assume ρ is real only for the sake of simplicity in presentation.

• Recall the expression of R(TIN)(ρ, P,H1) for N = 2 given in Section IV. It turns out that it is either

a decreasing or an increasing function of 0 ≤ ρ ≤ 1,4 i.e., R(TIN)(ρ, P,H1) is maximized either at

ρ = 0 or ρ = 1 for any P and any realization H1 of H1. This statement is no longer true for N ≥ 3.

For example, if P = 20dB, N = 3 and

H1 =


−0.0583− 1.2690

√
−1 0.0708− 0.4245

√
−1

−1.3669 + 0.5942
√
−1 −0.3850 + 0.3465

√
−1

−0.3104− 0.6279
√
−1 0.2146 + 0.5228

√
−1

 , (92)

then R(TIN)(ρ, P,H1) is maximized at ρ ≈ 0.89.

• The point ρ = 0 is always a point of extremum for R(TIN)(ρ, P,H1). In Appendix F, it is shown that

d

dρ
R(TIN)(ρ, P,H1) =

P

N

(
tr(Ω−1(AJA† +BJB†))− tr(Ξ−1BJB†)

)
, (93)

4See the statement before (124).
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where we have defined

J = ~1N~1
t
N − IN

Ω = IN + P
N
ACρA

† + P
N
BCρB

†

Ξ = IN + P
N
BCρB

†

. (94)

At ρ = 0, the matrices Ω and Ξ are diagonal and hence, tr(Ω−1(AJA†+BJB†)) = tr(Ξ−1BJB†) = 0

due to the fact that J is an N ×N matrix with 0 on all diagonal elements and 1 on all off-diagonal

elements. Using this fact in (93), d
dρ

∣∣
ρ=0

R(TIN)(ρ, P,H1) = 0, i.e., ρ = 0 is a point of extremum for

R(TIN)(ρ, P,H1) regardless of P and the realization H1 of H1.

Our first observation is about the behaviour R(TIN)(ρ, P,H1) around ρ = 0:

Proposition 2 Let N > 2 and aibj − ajbi 6= 0 for some 1 ≤ i < j ≤ N . Then

lim
P→∞

P
(
R(TIN)(ρ, P,H1) has a local minimum at ρ = 0

)
= 1. (95)

Proof: We already know that ρ = 0 is a point of extremum for R(TIN)(ρ, P,H1) regardless of the value

of P and the realization H1 of H1. As such, it is enough to show that

lim
P→∞

P
(

d2

dρ2

∣∣∣
ρ=0

R(TIN)(ρ, P,H1) > 0

)
= 1. (96)

In Appendix F, it is shown that

d2

dρ2

∣∣∣
ρ=0

R(TIN)(ρ, P,H1) = 2

(
P

N

)2 ∑
1≤i<j≤N

|bib∗j |2(
1 + P

N
|bi|2

) (
1 + P

N
|bj|2

)
−2

(
P

N

)2 ∑
1≤i<j≤N

|aia∗j + bib
∗
j |2(

1 + P
N

(|ai|2 + |bi|2)
) (

1 + P
N

(|aj|2 + |bj|2)
)

(97)

As such,

lim
P→∞

d2

dρ2

∣∣∣
ρ=0

R(TIN)(ρ, P,H1) = 2
∑

1≤i<j≤N

1− 2
∑

1≤i<j≤N

|aia∗j + bib
∗
j |2

(|ai|2 + |bi|2)(|aj|2 + |bj|2)

= 2
∑

1≤i<j≤N

|aibj − ajbi|2
(|ai|2 + |bi|2)(|aj|2 + |bj|2)

≥ 0, (98)

for all realizations H1 of H1. Let us denote the ratio on the right side of (98) by η. Using dominated
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convergence [28], we can write

lim
P→∞

P
(

d2

dρ2

∣∣∣
ρ=0

R(TIN)(ρ, P,H1) > 0

)
= P (η > 0) . (99)

Let 1 ≤ i0 < j0 ≤ N be such that ai0bj0 − aj0bi0 6= 0. Then P
(

|ai0bj0−aj0bi0 |
2

(|ai0 |2+|bi0 |2)(|aj0 |2+|bj0 |2)
> 0
)

= 1 and

since P (η > 0) ≥ P
(

|ai0bj0−aj0bi0 |
2

(|ai0 |2+|bi0 |2)(|aj0 |2+|bj0 |2)
> 0
)

, we get P (η > 0) = 1. This completes the proof of

Proposition 2 in light of (99).

Next, we set ρ = 1 and compute the outage probability P(R(TIN)(1, P,H1) ≤ r logP ) in the asymptote

of large P under the assumption that the channel gains represent Rayleigh fading. We have the following

result which is a generalization of (13) in Theorem 2:

Proposition 3 Let all the channel coefficients in a PGIC with N underlying GICs be independent.

Moreover, the direct and crossover channel coefficients are realizations of CN (0, 1) and CN (0, σ2) random

variables, respectively. The outage probability under TIN is given by 2NN−1

(N−1)!P
−(N−1)(1−r)+o(P−(N−1)(1−r))

for any 0 ≤ r < 1.

Proof: We have

AC1A
† +BC1B

† (a)
= A~1N(A~1N)† +B~1N(B~1N)†

=
[
A~1N B~1N

] [
A~1N B~1N

]†
(b)
= HH†, (100)

where H1 is given in (91), (a) is due to C1 = ~1N~1
t
N and (b) is due to A~1N =

[
a1 · · · aN

]t
and

B~1N =
[
b1 · · · bN

]t
. As such,

R(TIN)(1, P,H1) = log
det
(
IN + P

N
H1H

†
1

)
det
(
IN + P

N
B~1N(B~1N)†

)
= log

det
(
I2 + P

N
H†1H1

)
1 + P

N
(B~1N)†B~1N

, (101)

where the last step is due to the identity det(Im + UV ) = det(In + V U) where U and V are m× n and
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n×m matrices, respectively. Let

W =

 w w′

w′∗ w′′

 = diag(1, σ−1)H†1H1diag(1, σ−1). (102)

Then W is a complex Wishart W2(N, I2) random matrix with distribution [32]

pW (W ) =
cN
π

(ww′′ − |w′|2)N−2e−(w+w′′)1ww′′>|w′|2 , (103)

where

cN =
1

(N − 1)!(N − 2)!
. (104)

By (101) and (102),

R(TIN)(1, P,H1) = log
det
(
I2 + P

N
diag(1, σ)Wdiag(1, σ)

)
1 + P

N
σ2w′′

= log

(
1 + P

N
w
) (

1 + P
N
σ2w′′

)
− P 2

N2σ
2|w′|2

1 + P
N
σ2w′′

= log
(

1 +
P
N
w + P 2

N2σ
2(ww′′ − |w′|2)

1 + P
N
σ2w′′

)
. (105)

Let

f1(w
′′) =

N

P
(P r − 1)

(
1 +

P

N
σ2w′′

)
, w′′ ≥ 0, (106)

f2(w,w
′′) =

N

Pσ2
(f1(w

′′)− w)+, w, w′′ ≥ 0 (107)

and

g(w,w′′) = ww′′ − f2(w,w′′), w, w′′ ≥ 0. (108)

Then

P
(
R(TIN)(1, P,H1) ≤ r logP

)
= P

(
|w′|2 ≥ g(w,w′′)

)
= P (g(w,w′′) < 0) + P

(
|w′|2 ≥ g(w,w′′) ≥ 0

)
. (109)

We have g(w,w′′) < 0 if and only if ww′′ < f2(w,w
′′) and f1(w

′′) > w. These two constraints are
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equivalent to w < f1(0). Therefore,

P(g(w,w′′) < 0) = P
(
w < f1(0)

)
= 1− e−f1(0)

N−1∑
k=0

1

k!
(f1(0))k

=
NN−1

(N − 1)!
P−N(1−r) + o(P−N(1−r)), (110)

where the penultimate step is due to the fact that w, being the sum of N independent exponential random

variables with parameter 1, is a Gamma random variable with PDF pw(w) = 1
(N−1)!x

N−1e−x1x>0.

To compute P (|w′|2 ≥ g(w,w′′) ≥ 0), note that g(w,w′′) ≥ 0 is equivalent to w > f1(0). Then

P
(
|w′|2 ≥ g(w,w′′) ≥ 0

)
=

∫ ∞
0

∫ ∞
f1(0)

∫ ∞
−∞

∫ ∞
−∞

cN
π

(ww′′ − (s2 + t2))N−2e−(w+w
′′)1g(w,w′′)≤s2+t2≤ww′′ds dt dw dw′′

=

∫ ∞
0

∫ ∞
f1(0)

cN
π
e−(w+w

′′)

∫ ∞
−∞

∫ ∞
−∞

(ww′′ − (s2 + t2))N−21g(w,w′′)≤s2+t2≤ww′′ds dt dw dw′′.(111)

Using polar coordinates,∫ ∞
−∞

∫ ∞
−∞

(ww′′ − (s2 + t2))N−21g(w,w′′)≤s2+t2≤ww′′ds dt =
π

N − 1
(ww′′ − g(w,w′′))N−1

=
π

N − 1
(f2(w,w

′′))N−1. (112)

Hence,

P
(
|w′|2 ≥ g(w,w′′) ≥ 0

)
=

cN
N − 1

∫ ∞
0

∫ ∞
f1(0)

e−(w+w
′′)(f2(w,w

′′))N−1dw dw′′

=
cN

N − 1

(
N

Pσ2

)N−1 ∫ ∞
0

∫ f1(w′′)

f1(0)

e−(w+w
′′)(f1(w

′′)− w)N−1dw dw′.

(113)
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But, ∫ ∞
0

∫ f1(w′′)

f1(0)

e−(w+w
′′)(f1(w

′′)− w)N−1dw dw′
(a)
=

∫ ∞
0

e−(w
′′+f1(w′′))

(∫ f1(w′′)−f1(0)

0

ezzN−1dz
)

dw′′

=

∫ ∞
0

e−(w
′′+f1(w′′))

[
ez

N−1∑
k=0

(−1)kk!

(
N − 1

k

)
zN−1−k

]f1(w′′)−f1(0)
0

dw′′

=

∫ ∞
0

e−(w
′′+f1(0))

N−1∑
k=0

(−1)kk!

(
N − 1

k

)
(f1(w

′′)− f1(0))N−1−kdw′′

+(−1)N(N − 1)!

∫ ∞
0

e−(w
′′+f1(w′′))dw′′

(b)
= e−f1(0)

N−1∑
k=0

(−1)kk!

(
N − 1

k

)
(σ2(P r − 1))N−1−k

∫ ∞
0

e−w
′′
w′′N−1−kdw′′

+(−1)N(N − 1)!e−f1(0)
∫ ∞
0

e−(1+σ
2(P r−1))w′′dw′′

(c)
= (N − 1)!e−f1(0)

(N−1∑
k=0

(−1)k(σ2(P r − 1))N−1−k +
(−1)N

1 + σ2(P r − 1)

)
= (N − 1)!(σ2)N−1P r(N−1)(1 + o(1)), (114)

where in (a) we have applied the change of variable z = f1(w
′′) − w, (b) is due to f1(w

′′) = f1(0) +

σ2(P r − 1)w′′ and (c) is due to
∫∞
0
e−w

′′
w′′N−1−kdw′′ = (N − 1− k)!. By (113) and (114),

P
(
|w′|2 ≥ g(w,w′′) ≥ 0

)
=

cN
N − 1

(
N

Pσ2

)N−1
(N − 1)!(σ2)N−1P r(N−1)(1 + o(1))

=
NN−1

(N − 1)!
P−(N−1)(1−r) + o(P−(N−1)(1−r)). (115)

By (109), (110) and (115), the proof is complete.

X. DISCUSSION AND CONCLUDING REMARKS

We studied a simple signalling scheme for a two-user PGIC consisting of N = 2 parallel GICs where

each user has a single-layer codebook and transmits Gaussian signals with identical variance P
2

and

correlation ρ over the underlying GICs. Under general conditions on the fading statistics, it was shown that

the value of ρ that minimizes the outage probability approaches 1 as SNR approaches infinity under both

TIN and CI, while ρ = 0 is optimum under JD regardless of the value of SNR. Under the assumption that

the direct and crossover channel coefficients are independent CN (0, 1) and CN (0, σ2) random variables,

respectively, and the transmission rate per user is r logP for some 10 ≤ r < 1, it was demonstrated that

• The outage probability decays like P−(1−r) under both TIN and CI where it is assumed that ρ = 1.
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Fig. 5. Plots of limP→∞ P(fK,N > 0) as given in (117) in terms of the number K of users for different values of N . The plots are
produced via Monte Carlo simulation by generating 20,000 independent samples for each channel coefficient.

• The outage probability under JD is bounded from above by a term that decays like P−(2−r) lnP and

P−4(1−r) lnP for 0 ≤ r < 2
3

and 2
3
< r < 1, respectively, where it is assumed that ρ = 0.

In particular, it was seen that one can do better in terms of achieving a smaller outage probability by

letting the users share both channels in contrast to avoiding interference and having the users transmit

over orthogonal GICs. It is conjectured that the upper bound on the outage probability under JD is tight

in the asymptote of large P .

Let us conclude by a brief examination of a PGIC with N ≥ 2 parallel GICs and K > 2 users and

pointing out a significant difference in system behaviour for K > 2 in contrast to K = 2. Assume each

user transmits CN (0, P
N

) signals with mutual correlation ρ ∈ (− 1
N+1

, 1) over different GICs. Denoting

the channel coefficient from the kth transmitter to the receiver of user 1 over the nth GIC by hk,n and

treating interference as noise at the receivers, similar calculations as in Section IX show that ρ = 0 is a

point of extremum for achievable rate per user, regardless of r, P , N , K and the realizations of channel

coefficients. Moreover, ρ = 0 is a point of local minimum for the achievable rate of say user 1 if and only

if5

fK,N =

(
P

N

)2 ∑
1≤m<n≤N

(
|ĝm,n|2(

1 + P
N
ĝm,m

) (
1 + P

N
ĝn,n
) − |gm,n|2(

1 + P
N
gm,m

) (
1 + P

N
gn,n
)) > 0, (116)

where ĝm,n =
∑K

k=2 hk,mh
∗
k,n and gm,n =

∑K
k=1 hk,mh

∗
k,n for any 1 ≤ m ≤ n ≤ N . In contrast to the case

of K = 2, it turns out that the probability of ρ = 0 being a point of local minimum for achievable rate

5Note the similarity between the expressions in (116) and (97).
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per user is strictly less than 1 for K > 2. To see this note that

lim
P→∞

P(fK,N > 0) = P
( ∑

1≤m<n≤N

( |ĝm,n|2
ĝm,mĝn,n

− |gm,n|2
gm,mgn,n

)
> 0

)
, (117)

by dominated convergence [28]. Assuming the direct and crossover channel coefficients are realiza-

tions of independent CN (0, 1) and CN (0, σ2) random variables, respectively, Fig. 5 presents plots of

limP→∞ P(fK,N > 0) in terms of K = 2, · · · , 20 for different values of N . Panels (a) and (b) correspond

to σ2 = 1 and σ2 = 0.1, respectively.

APPENDIX A; PROOF OF LEMMA 1

Fix 0 ≤ ε < 1. We have

{
R(CI)(ρ, P,H1) = R′(ρ, P,H1) for any 0 ≤ ρ ≤ ε

}
=
⋂

0≤ρ≤ε

{
R′(ρ, P,H1) ≤ R′′(ρ, P,H1)

}
. (118)

Let us write

P

( ⋂
0≤ρ≤ε

{R′(ρ, P,H1) ≤ R′′(ρ, P,H1)}
)

= P

( ⋂
0≤ρ≤ε

{
log

α(P,H1)− β(P,H1)ρ
2

(γ′(P,H1)− δ′(P,H1)ρ2)2
≤ 0

})

= P

( ⋂
0≤ρ≤ε

{
α(P,H1)− β(P,H1)ρ

2

(γ′(P,H1)− δ′(P,H1)ρ2)2
≤ 1

})

= P
(

sup
0≤ρ≤ε

α(P,H1)− β(P,H1)ρ
2

(γ′(P,H1)− δ′(P,H1)ρ2)2
≤ 1

)
= P

(
sup
0≤ρ≤ε

f(ρ, P,H1) ≤ 1
)
, (119)

where we have defined

f(ρ, P,H1) =
α(Pn, H1)− β(Pn, H1)ρ

2

(γ′(P,H1)− δ′(P,H1)ρ2)2
. (120)

To proceed, we need the following lemma:

Lemma 4 For any 0 ≤ ε ≤ 1,

lim
P→∞

P
(
f(ρ, P,H1) is an increasing function of 0 ≤ ρ ≤ ε

)
= 1. (121)

Proof: We have

df

dρ
=

2ρ (∆′(P,H1) + (α(P,H1)− β(P,H1)ρ
2)δ′(P,H1))

(γ′(P,H1)− δ′(P,H1)ρ2)3
, (122)
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where

∆′(P,H1) = α(P,H1)δ
′(P,H1)− β(P,H1)γ

′(P,H1). (123)

Since (α(P,H1)− β(P,H1)ρ
2)δ′(P,H1) ≥ 0 and γ′(P,H1)− δ′(P,H1)ρ

2 > 0 for all ρ, P and H1, then

f is an increasing function of ρ if ∆′(P,H1) > 0. Therefore,

P
(
f(ρ, P,H1) is an increasing function of 0 ≤ ρ ≤ ε

)
≥ P(∆′(P,H1) > 0). (124)

∆′(P,H1) is a polynomial of degree at most four in terms of P . In fact,

∆′(P,H1) = ∆′1(H1)
P 2

4
+ ∆′2(H1)

P 3

8
+ ∆′3(H1)

P 4

16
, (125)

where

∆′1(H1) = |a1|2|a2|2 − |b1b∗2 + a1a
∗
2|2, (126)

∆′2(H1) = |a1|2|a2|2(|b1|2 + |b2|2 + |a1|2 + |a2|2)− (|a1|2 + |a2|2)|b1b∗2 + a1a
∗
2|2 (127)

and

∆′3(H1) = |a1|2|a2|2(|a1|2 + |b1|2)(|a2|2 + |b2|2)− |a1|2|a2|2|a1a∗2 + b1b
∗
2|2

= |a1|2|a2|2
(
(|a1|2 + |b1|2)(|a2|2 + |b2|2)− |a1a∗2 + b1b

∗
2|2
)

= |a1|2|a2|2|a1b2 − a2b1|2. (128)

As a1b2 − a2b1 = det(H1) 6= 0,

P(∆′3(H1) > 0) = 1. (129)

Letting P →∞,

lim
P→∞

P(∆′(P,H1) > 0) = lim
P→∞

P
(

∆′1(H1)
P 2

4
+ ∆′2(H1)

P 3

8
+ ∆′3(H1)

P 4

16
> 0

)
= lim

P→∞
P
(
4∆′1(H1)P

−2 + 2∆′2(H1)P
−1 + ∆′3(H1) > 0

)
(a)
= P(∆′3(H1) > 0)

(b)
= 1, (130)
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where (a) is due to dominated convergence [28] and (b) follows by (129). Finally, (124) and (130)

conclude the proof of Lemma 4.

For simplicity, let FP be the event of f(ρ, P,H1) being an increasing function of 0 ≤ ρ ≤ ε. Then by

Lemma 4,

lim
P→∞

P (FP ) = 1. (131)

Let us write

P
(

sup
0≤ρ≤ε

f(ρ, P,H1) ≤ 1
)
≥ P

(
sup
0≤ρ≤ε

f(ρ, P,H1) ≤ 1,FP
)

= P
(
f(ε, P,H1) ≤ 1,FP

)
≥ P

(
f(ε, P,H1) ≤ 1

)
+ P(FP )− 1, (132)

where the penultimate step is due to supρ≤ε f(ρ, P,H1) = f(ε, P,H1) under FP and the last step follows

by the bound P(A⋂B) ≥ P(A) +P(B)− 1 for any two events A and B. By (120) and noting that ε < 1,

limP→∞ f(ε, P,H1) = 0. Then one can invoke dominated convergence [28] to get

lim
P→∞

P (f(ε, P,H1) ≤ 1) = 1. (133)

Using (131) and (133) in (132),

lim
P→∞

P
(

sup
0≤ρ≤ε

f(ε, P,H1) ≤ 1
)

= 1. (134)

This together with (118) and (119) complete the proof of Lemma 1.

APPENDIX B; PROOF OF LEMMA 2

We need several properties of Kn(·) given as follows [34]:

• Recursion Rule:

Kn+1(z)−Kn−1(z) =
2n

z
Kn(z), (135)

• Differentiation Rule:

d

dz
K0(z) = −K1(z),

d

dz
(znKn(z)) = −znKn−1(z), n ≥ 1, (136)
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• Asymptotic Exapansion:

Kn(z)
z→∞∼

√
π

2z
e−z(1 + o(1)) (137)

and

K0(z)
z→0∼ − ln z, Kn(z)

z→0∼ (n− 1)!

2

(
2

z

)n
, n ≥ 1, (138)

where for two functions f and g and c ∈ [−∞,∞], f z→c∼ g means limz→c
f(z)
g(z)

= 1.

Let ui for 1 ≤ i ≤ 4 be independent exponential random variables with parameter 1. Define

vt = (u1 + tu3)(u2 + tu4). (139)

where t > 0. Clearly, |a1|2|a2|2 and (|a1|2 + |b1|2)(|a2|2 + |b2|2) are identically distributed as v0 and

vσ2 , respectively. As such, it suffices to find the cumulative distribution function of vt for arbitrary t > 0.

Both pu1+tu3(·) and pu2+tu4(·) are the convolution of the PDFs e−u1u>0 and 1
t
e−

u
t 1u>0. Then

pu1+tu3(u) = pu2+tu4(u) =


1
t−1

(
e−

u
t − e−u

)
1u>0 t 6= 1

ue−u1u>0 t = 1
. (140)

Using the fact that pxy(z) =
∫∞
−∞

1
|x| py( z

x
)px(x)dx for any two independent random variables x and y,

we can write

pvt(v) =

∫ ∞
0

1

v
pu1+tu3(u)pu2+tu4

(v
u

)
dv

=
1

(t− 1)2

∫ ∞
0

1

u
e−(

u
t
+ v
tu

)du− 1

(t− 1)2

∫ ∞
0

1

u
e−(

u
t
+ v
u
)du

− 1

(t− 1)2

∫ ∞
0

1

u
e−(u+

v
tu

)du+
1

(t− 1)2

∫ ∞
0

1

u
e−(u+

v
u
)du, (141)

for t 6= 1 and

pvt(v) = v

∫ ∞
0

1

u
e−(u+

v
u
)du, (142)

for t = 1. By identity (9.42) on page 235 in [34],
∫∞
0
u−n−1e−(c1u+

c2
u
)du = 2( c1

c2
)
n
2Kn(2

√
c1c2). Then

pvt(v) =


2

(t−1)2

(
K0(

2
√
v
t

)− 2K0(2
√

v
t
) +K0(2

√
v)
)

t 6= 1

2vK0(2
√
v) t = 1

. (143)
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Next, let us compute P(vt ≤ v). If t = 1,

P(vt ≤ v) =

∫ v

0

2xK0(2
√
x)dx =

1

4

∫ 2
√
v

0

y3K0(y)dy, (144)

where we have applied the change of variable y = 2
√
x. Using the differentiation rule in (136) and

integration by parts, it is easy to see that
∫
y3K0(y)dy = −y3K1(y)− 2y2K2(y). Then

P(v1 ≤ v) =
1

4

[
− (y3K1(y) + 2y2K2(y))

]2√v
0

(a)
= 1− 2v(

√
vK1(2

√
v) +K2(2

√
v))

(b)
= 1− 2

√
vK0(2

√
v)− 2

√
v(1 + v)K1(2

√
v), (145)

where in (a) we have used the asymptotic behaviour for small argument in (137) to get limz→0 z
3K1(z) = 0

and limz→0 z
2K2(z) = 2 and (b) is due to the recursion rule in (135), i.e., K2(2

√
v) = K0(2

√
v) +

1√
v
K1(2

√
v).

If t 6= 1, one can use a similar approach to prove

P(vt ≤ v) = 1− 2

(t− 1)2

(
t
√
vK1(

2
t

√
v)− 2

√
tvK1(

2
t

√
tv) +

√
vK1(2

√
v)
)
. (146)

Finally, limt→0 vt = v0 implies that vt converges weakly to v0, i.e.,

P(v0 ≤ v) = lim
t→0

P(vt ≤ v) = 1− 2
√
vK0(2

√
v), (147)

where in the last step we have used the asymptotic expansion for large argument in (137) to conclude

limt→0 tK0(
2
t

√
v) = limt→0

√
tK0(

2
t

√
tv) = 0.

APPENDIX C; PROOF OF LEMMA 3

Define

φ(0) = 0, φ(k) = 1 +
1

2
+ · · ·+ 1

k
, k ≥ 1. (148)

Then one can expand Kn(·) as [33]

K0(z) =
∞∑
k=0

(
z
2

)2k
(k!)2

(
φ(k)− γ − ln

z

2

)
(149)

K1(z) =
1

z
−
∞∑
k=0

(
z
2

)2k+1

k!(k + 1)!

(φ(k) + φ(k + 1)

2
− γ − ln

z

2

)
(150)
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where γ is the so-called Euler-Mascheroni constant. By (76),

Ψ1(v) = (1− 2γ − ln v)v +
(5

4
− γ − 1

2
ln v
)
v2 + · · ·

= −v ln v + o(v ln v). (151)

By (77) and for σ2 = 1,

Ψ2(v) =
(1

4
− γ − 1

2
ln v
)
v2 +

(7

9
− 2

3
γ − 1

3
ln v
)
v3 + · · ·

= −1

2
v2 ln v + o(v2 ln v). (152)

If σ2 6= 1,

Ψ2(v) =
1

σ4

(5

4
− γ − lnσ4 − 1

2
ln v
)
v2 +

(σ2 + 1)2

6σ8

(5

3
− γ +

1

2
ln v
)
v3 + · · ·

= − 1

2σ4
v2 ln v + o(v2 ln v). (153)

APPENDIX D; DERIVATION OF (84)

We have

R(TIN)(0, P,H1) = log

(
1 + P

2
(|a1|2 + |b1|2)

) (
1 + P

2
(|a2|2 + |b2|2)

)(
1 + P

2
|b1|2

) (
1 + P

2
|b2|2

)
= log

((
1 +

P
2
|a1|2

1 + P
2
|b1|2

)(
1 +

P
2
|a2|2

1 + P
2
|b2|2

))
. (154)

But,

P
(

1 +
P
2
|a1|2

1 + P
2
|b1|2

< x

)
(a)
= E

[
P
(

1 +
P
2
|a1|2

1 + P
2
|b1|2

< x
∣∣∣b1 = b1

)]
= E

[
P
(
|a1|2 <

2

P
(x− 1) + (x− 1)|b1|2

)]
= 1− e− 2

P
(x−1)E

[
e−(x−1)|b1|

2]
(b)
= 1− e−

2
P
(x−1)

1 + σ2(x− 1)
, x ≥ 1, (155)

where (a) is by the tower property for conditional expectations [28] and (b) is due to the fact that |b1|2

is an exponential random variable with parameter 1
σ2 . Finally, (84) follows using the fact that P(uv <

w) =
∫∞
−∞ P(v < w

u
)pu(u)du for any two independent random variables u and v.
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APPENDIX E; PROOF OF THEOREM 3

By (22),

R(TIN)(ρ, Pn, Hn) = log
1 + Pn

2
cn + P 2

n

4
((|a1|2 + σ2

n|b1|2)(|a2|2 + σ2
n|b2|2)− ρ2|a1a∗2 + σ2

nb1b
∗
2|2)

1 + Pnσ2
n

2
(|b1|2 + |b2|2) + P 2

nσ
4
n

4
|b1|2|b2|2(1− ρ2)

, (156)

where cn = |a1|2 + |a2|2 + σ2
n(|b1|2 + |b2|2). Since limn→∞ Pnσ

2
n = 0 and Pn is an unbounded sequence,

then limn→∞ σ
2
n = limn→∞ P

2
nσ

4
n = 0. Using these facts in (156), we get

lim
n→∞

R(TIN)(ρ, Pn,Hn)− log

(
1 +

Pn
2

(|a1|2 + |a2|2) +
P 2
n

4
(1− ρ2)|a1|2|a2|2

)
= 0, (157)

almost surely for any 0 ≤ ρ < 1 and

lim
n→∞

R(TIN)(1, Pn,Hn)− log

(
1 +

Pn
2

(|a1|2 + |a2|2) +
P 2
nσ

2
n

4
|a1b2 − a2a1|2

)
= 0. (158)

Moreover,

lim
n→∞

log

(
1 +

Pn
2

(|a1|2 + |a2|2) +
P 2
n

4
(1− ρ2)|a1|2|a2|2

)
− r logPn =∞, (159)

for any 0 ≤ r < 2 and

lim
n→∞

log

(
1 +

Pn
2

(|a1|2 + |a2|2) +
P 2
nσ

2
n

4
|a1b2 − a2b1|2

)
− r logPn

= lim
n→∞

log
1 + Pn

2

(
(|a1|2 + |a2|2) + Pnσ2

n

2
|a1b2 − a2b1|2

)
P r
n

= lim
n→∞

log
Pn
2

(|a1|2 + |a2|2)
P r
n

=∞, (160)

for any 0 ≤ r < 1 where the last step is due to limn→∞ Pnσ
2
n = 0. Note that in writing (158) and

(160), we have used the facts that a1,a2,a1b2 − a2b1 6= 0. By (157) and (159) and using dominated

convergence [28],

lim
n→∞

P
(
R(TIN)(ρ, Pn,Hn) ≤ r logPn

)
= 0, (161)

for any 0 ≤ r < 2. Similarly, by (158) and (160),

lim
n→∞

P
(
R(TIN)(1, Pn,Hn) ≤ r logPn

)
= 0, (162)
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for any 0 ≤ r < 1. Finally, noting that the value of the limit in (160) changes to −∞ if r > 1, we

conclude that limn→∞ P(R(NIT)(1, Pn,Hn) ≤ r logPn) = 1 if r > 1.

APPENDIX F; DERIVATION OF (93) AND (97)

• Computation of d(R(TIN)(ρ, P,H1)):

For any complex square matrix M with positive determinant, the complex differential [31] of ln det(M)

is given by d(ln detM) = tr(M−1dM) where dM is the element-wise differential of M . Then

d(R(TIN)(ρ, P,H1)) = d

(
log

det Ω

det Ξ

)
= d(log det Ω)− d(log det Ξ)

= tr(Ω−1dΩ)− tr(Ξ−1dΞ). (163)

But,

dΩ = d
(
IN +

P

N
ACρA

† +
P

N
BCρB

†
)

=
P

N
A d(Cρ)A

† +
P

N
B d(Cρ)B

†

=
P

N

(
AJA† +B JB†

)
dρ, (164)

where the last step follows by d(Cρ) = d(ρ~1N~1
t
N + (1− ρ)IN) = Jdρ in which J is defined in (94).

Similarly,

dΞ =
P

N
B JB†dρ. (165)

By (163), (164) and (165), we obtain (93).

• Computation of d2(R(TIN)(ρ, P,H1)):

Let M be a complex and invertible square matrix and Q be an arbitrary complex matrix such that

the product MQ is defined. The complex differential of tr(M−1Q) is given by [31] d(tr(M−1Q)) =
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tr(M−1QM−1dM). Applying this fact to (93),

d

(
N

P

d(R(TIN)(ρ, P,H1))

dρ

)
= d

(
tr
(
Ω−1(AJA† +BJB†)

))
− d

(
tr
(
Ξ−1BJB†

))
= tr

(
Ω−1(AJA† +BJB†)Ω−1dΩ

)
− tr

(
Ξ−1BJB†Ξ−1dΞ

)
=

P

N
tr
(
Ω−1(AJA† +BJB†)Ω−1(AJA† +BJB†)

)
dρ

−P
N

tr
(
Ξ−1BJB†Ξ−1BJB†

)
dρ

=
P

N
tr
((

Ω−1(AJA† +BJB†)
)2)

dρ− P

N
tr
((

Ξ−1BJB†
)2)

dρ,

(166)

where the penultimate step is due to (164) and (165). Therefore,

d2

dρ2
R(TIN)(ρ, P,H1) =

(
P

N

)2 (
tr
((

Ω−1(AJA† +BJB†)
)2)− tr

((
Ξ−1BJB†

)2))
. (167)

Noting that both Ω−1 and Ξ−1 are diagonal at ρ = 0, we get

[
Ω−10 (AJA† +BJB†)

]
i,j

=
aia
∗
j + bib

∗
j

1 + P
N

(|ai|2 + |bi|2)
1i 6=j (168)

and

[
Ξ−10 BJB†

]
i,j

=
bib
∗
j

1 + P
N
|bi|2

1i 6=j, (169)

where Ω0 and Ξ0 are Ω and Ξ evaluated at ρ = 0, respectively. Then

tr
((

Ω−10 (AJA† +BJB†)
)2)

=
N∑
i=1

[(
Ω−10 (AJA† +BJB†)

)2]
i,i

=
N∑
i=1

N∑
j=1

[
Ω−10 (AJA† +BJB†)

]
i,j

[
Ω−10 (AJA† +BJB†)

]
j,i

= 2
∑

1≤i<j≤N

|aia∗j + bib
∗
j |2(

1 + P
N

(|ai|2 + |bi|2)
) (

1 + P
N

(|aj|2 + |bj|2)
) , (170)

where the last step is due to (168). Similarly,

tr
((

Ξ−1BJB†
)2)

= 2
∑

1≤i<j≤N

|bib∗j |2(
1 + P

N
|bi|2

) (
1 + P

N
|bj|2

) . (171)

Finally, (167), (170) and (171) yield (97).
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