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Abstract

We consider the following iterative construction of a random planar triangulation.
Start with a triangle embedded in the plane. In each step, choose a bounded face
uniformly at random, add a vertex inside that face and join it to the vertices of
the face. After n − 3 steps, we obtain a random triangulated plane graph with
n vertices, which is called a Random Apollonian Network (RAN). We show that
asymptotically almost surely (a.a.s.) every path in a RAN has length o(n), refuting
a conjecture of Frieze and Tsourakakis. We also show that a RAN always has a
path of length (2n − 5)log 2/ log 3, and that the expected length of its longest path
is Ω

(
n
0.88

)
. Finally, we prove that a.a.s. the diameter of a RAN is asymptotic to

c log n, where c ≈ 1.668 is the solution of an explicit equation.
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1 Introduction

Due to the ever growing interest in social networks, the Web graph, biolog-
ical networks, etc., in recent years a great deal of research has been built
around modelling real world networks (see, e.g., the surveys [5,8,15] or the
books [4,6,10]). Despite the outstanding amount of work on models generat-
ing graphs with power law degree sequences, a considerably smaller amount
of work has focused on generative models for planar graphs. In this paper we
study a popular random graph model for generating planar graphs with power
law properties, which is defined as follows. Start with a triangle embedded
in the plane. In each step, choose a bounded face uniformly at random, add
a vertex inside that face and join it to the vertices of the face. We call this
operation subdividing a face. Throughout the paper, we use the term “face”
to refer to a “bounded face,” unless specified otherwise. After n− 3 steps, we
have a (random) triangulated plane graph with n vertices and 2n − 5 faces.
This is called a Random Apollonian Network (RAN) and we study its asymp-
totic properties as its number of vertices goes to infinity. The number of edges
equals 3n− 6; hence a RAN is a maximal plane graph.

The term “apollonian network” refers to a deterministic version of this
process, formed by subdividing all the triangles in the same level the same
number of times, which was first studied in [2,11]. Andrade et al. [2] studied
power laws in the degree sequences of these networks. Random apollonian
networks were defined in [19] (see also [18] for a generalization to higher di-
mensions), where it was proved that the diameter of a RAN is probabilistically
bounded above by a constant times the logarithm of the number of vertices.
It was shown in [19,17] that RANs exhibit a power law degree distribution.

1 A detailed version of this paper containing all the proofs is available in
http://arxiv.org/abs/1303.5213
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8 This author acknowledges support from the Canada Research Chairs program and
NSERC, and the ARC Australian Laureate Fellowship scheme.
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The average distance between two vertices in a typical RAN was shown to be
logarithmic [1]. The degree distribution, k largest degrees and k largest eigen-
values (for fixed k) and the diameter were studied in [14]. We continue this
line of research by studying the asymptotic properties of the longest (simple)
paths in RANs and giving sharp estimates for the diameter of a typical RAN.

Before stating our main results, we need a few definitions. In this paper n
and m denote the number of vertices and faces of the RAN, respectively. All
logarithms are in the natural base. We say an event A happens asymptotically
almost surely (a.a.s.) if P [A] approaches 1 as n goes to infinity. For a random
variable X = X(n) and a function f(n), we say a.a.s. X = o

(
f(n)

)
if for

every fixed ε > 0, limn→∞ P [X ≤ εf(n)] = 1 . Similarly, we say X is a.a.s.
asymptotic to f if a.a.s. X =

(
1 + o(1)

)
f .

In the concluding remarks of [14], Frieze and Tsourakakis conjectured that
a.a.s. a RAN has a path of length Ω(n). We refute this conjecture by proving
the following theorem. Let Lm be a random variable denoting the number of
vertices in a longest path of a RAN with m faces.

Theorem 1.1 A.a.s. we have Lm = o(m).

Recall that a RAN on n vertices has 2n− 5 faces, so Theorem 1.1 implies
that a.a.s. a RAN does not have a path of length Ω(n).

We also prove a deterministic lower bound for the length of a longest path,
as well as a lower bound for its expected value.

Theorem 1.2 For every positive integer m, the following statements are true.

(a)

Lm ≥ mlog 2/ log 3 + 2 .

(b)

E [Lm] = Ω
(
m0.88

)
.

The proofs of Theorems 1.1 and 1.2 are built on two novel graph theoretic
observations, valid for all subgraphs of an apollonian network.

We also study the diameter of RANs. Frieze and Tsourakakis [14] showed
that the diameter of a RAN is a.a.s. at most η2 log n, where η2 ≈ 7.081 is
the unique solution greater than 1 of exp (1/x) = 3e/x. (Our statement here
corrects a minor error in [14], propagated from Broutin and Devroye [7], which
stated that η2 is the unique solution less than 1.) Albenque and Marckert [1]
showed that a.a.s. the distance between two randomly chosen vertices of a
RAN (which naturally gives a lower bound on the diameter) is asymptotic to
η1 logn, where η1 = 6/11 ≈ 0.545. In this paper, we provide the asymptotic
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value for the diameter of a typical RAN.

Theorem 1.3 A.a.s. the diameter of a RAN on n vertices is asymptotic to
c logn, with c = (1− x̂−1)/ log h(x̂) ≈ 1.668, where

h(x) =
12x3

1− 2x
− 6x3

1− x
,

and x̂ ≈ 0.163 is the unique solution in the interval (0.1, 0.2) to x(x−1)h′(x) =
h(x) log h(x) .

The proof of Theorem 1.3 consists of a nontrivial reduction of the problem
of estimating the diameter to the problem of estimating the height of a certain
skewed random tree, which can be done by applying a result of Broutin and
Devroye [7].

We include some definitions here. Let G be a RAN. We denote the vertices
incident with the unbounded face by ν1, ν2, ν3. We define a rooted tree T ,
called the �-tree of G, as follows. There is a one to one correspondence
between the triangles in G and the nodes of T . For every triangle � in G, we
denote its corresponding node in T by n�. To build T , start with a single root
node, which corresponds to the triangle ν1ν2ν3 of G. Wherever a triangle � is
subdivided into triangles �1, �2, and �3, generate three children n�1, n�2 ,
and n�3 for n�, and extend the correspondence in the natural manner. Note
that this is a random ternary tree, with each node having either zero or three
children, and has 3n − 8 nodes and 2n − 5 leaves. We use the term “nodes”
for the vertices of T , so that “vertices” refer to the vertices of G. The depth
of a node n� is its distance to the root. Note that the leaves of T correspond
to the faces of G.

We sketch the proofs Theorems 1.1, 1.2, and 1.3 in Sections 2, 3, and 4,
respectively.

2 Upper bound for the longest paths

Let � be a triangle in a RAN. The 1-subdivision of � is the set {�1,�2,�3}
of three triangles obtained from subdividing � once, and the 2-subdivision of
� is obtained from subdividing each of these three triangles exactly once. We
can analyze the number of faces inside�1 by modelling the process of building
the RAN as an Eggenberger-Pólya urn (see, e.g., [16, Section 5.1]) in a natural
way. Then a result of Eggenberger and Pólya [13] (see also [16, Theorem 5.1.2])
implies that the probability distribution function of the proportion of faces in
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�1 converges pointwise to that of a beta random variable with parameters
1/2 and 1. In this way we obtain the following.

Lemma 2.1 Let � be a triangle containing m faces in a RAN, and let Z1, Z2,
. . . , Z9 be the number of faces inside the nine triangles in the 2-subdivision of
�. Given ε > 0, there exists m0 = m0(ε) such that for m > m0,

P [min{Z1, . . . , Z9}/m < ε] < 13 4
√
ε .

The set of grandchildren of a node is the set of children of its children, so
every node in a ternary tree has between zero and nine grandchildren. The
following lemma can be proved easily.

Lemma 2.2 Let G be a RAN and let T be its �-tree. Let n� be a node of
T with nine grandchildren n�1 ,n�2, . . . ,n�9. Then a path in G cannot enter
the interior of each triangle �1, . . . ,�9.

Proof of Theorem 1.1 (sketch). Let � be the triangle ν1ν2ν3. The 2-
subdivision of � consists of nine triangles, and every path misses the vertices
in at least one of them by Lemma 2.2. We can now apply the same argument
inductively for the other eight triangles, and repeat. Note that if the dis-
tribution of vertices in the nine triangles of every 2-subdivision were always
moderately balanced, this argument would immediately prove the theorem
(by repeating O(logn) steps). Unfortunately, the distribution is biased to-
wards becoming unbalanced: the greater the number of vertices falling in a
certain triangle, the higher the probability that the next vertex falls in the
same triangle.

However, Lemma 2.1 gives an upper bound for the probability that this dis-
tribution is very unbalanced. Let k = (log log n)/2. Let d0 = 0 and di = 2i−1k
for 1 ≤ i ≤ k. It can be proved using Chauvin and Drmota [9, Theorem 2.3]
(see also Drmota [12, Theorem 6.47]), that the tree T is a.a.s. full down to
level 2dk. Let ε be a fixed positive number such that 3(13 4

√
4ε)1/5 < 1. Using

Lemma 2.1 one can prove the following holds a.a.s.

Let v be an arbitrary node of T at depth di for some 1 ≤ i ≤ k, and let
u be the ancestor of v at depth di−1. Then there is at least one node f on
the (u, v)-path in T with depth between di−1 and di− 2, such that f has nine
grandchildren, each of whose triangles contains at least an ε fraction of the
vertices in f ’s triangle.

The rest of the proof is straightforward by applying this result iteratively
for i = 1, 2, . . . , k, and keeping track of the number vertices left out from the
path in each iteration. �
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3 Lower bounds for the longest paths

Let G be a RAN with m faces, and let v be the unique vertex that is adjacent
to ν1, ν2, and ν3. For 1 ≤ i ≤ 3, let �i be the triangle with vertex set
{v, ν1, ν2, ν3} \ {νi}. Define the random variable L′

m as the largest number L
such that for every permutation π on {1, 2, 3}, there is a path in G of L edges
from νπ(1) to νπ(2) not containing νπ(3). Clearly we have Lm ≥ L′

m + 2.

Proof of Theorem 1.2(a). Let ξ = log 2/ log 3. We prove by induction on
m that L′

m ≥ mξ. The induction base is obvious for m = 1, so assume that
m > 1. Let mi denote the number of faces in�i. Then m1+m2+m3 = m. By
symmetry, we may assume that m1 ≥ m2 ≥ m3. For any given 1 ≤ i ≤ 3, it is
easy to find a path avoiding νi that connects the other two νj ’s by attaching
two appropriate paths in �1 and �2 at vertex v. By the inductive hypothesis,
these paths can be chosen to have lengths at least m1

ξ and m2
ξ. Hence for

every permutation π on {1, 2, 3}, there is a path from νπ(1) to νπ(2) avoiding
νπ(3) with length at least m1

ξ +m2
ξ. This quantity is minimized when m1 =

m2 = m/3, thus L′
m ≥ m1

ξ +m2
ξ ≥ 2 (m/3)ξ = mξ. �

Proof of Theorem 1.2(b) (sketch). Let ζ = 0.88. We prove by induction
onm that for some fixed κwe have E [L′

m] ≥ κmζ . By choosing κ small enough,
we may assume that this holds for all m smaller than a certain number. Let
the random variable Xi denote the number of faces in �i. Define a random
permutation σ on {1, 2, 3} such that Xσ(1) ≥ Xσ(2) ≥ Xσ(3), breaking ties
randomly. Then we have

E [L′
m] ≥ E

[
L′

Xσ(1)
+ L′

Xσ(2)

]
≥ 6E

[
(L′

X1
+ L′

X2
)�X1>X2>X3

]
≥ 6κE

[
(Xζ

1 +Xζ
2 )�X1>X2>X3

]
,

using first an argument similar to that of part (a), then symmetry, and then
the inductive hypothesis.

By the distributional result of Eggenberger and Pólya [13] (mentioned in
Section 2), the distribution of Xi

m
converges pointwise to that of a beta ran-

dom variable with parameters 1
2
and 1. Moreover, for any fixed ε ∈ [0, 1), the

distribution of X2

(1−ε)m
conditional on X1 = εm converges pointwise to that of

a beta random variable with parameters 1
2
and 1

2
. Let f1(x) (respectively,

f2(x)) denote the probability density function of a beta random variable with
parameters 1

2
and 1 (respectively, 1

2
and 1

2
). Hence (see Billingsley [3, Theo-
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rem 29.1(i)])

E

[((
X1

m

)ζ

+

(
X2

m

)ζ
)
�X1>X2>X3

]

→
∫ 1

t=1/3

∫ min{1, t

1−t
}

s=1/2

[
tζ + (s(1− t))ζ

]
f1(t)f2(s) dsdt > 1/6 ,

as required. �

4 Diameter

Let G be a RAN with n vertices. For a vertex v of G, let τ(v) be the minimum
graph distance between v and ν1, ν2 or ν3. The radius of G is defined as the
maximum of τ(v) over all vertices v. We will sketch the proof that the radius
of G is a.a.s. asymptotic to c

2
log n; it is not hard to show that Theorem 1.3

follows from this. Let T be the �-tree of G. Any triangle � in G with vertex
set {x, y, z} such that τ(x) ≤ τ(y) ≤ τ(z) can be categorized as type 1 if
τ(x) = τ(y) = τ(z); type 2 if τ(x) = τ(y) < τ(y) + 1 = τ(z); and type 3
if τ(x) < τ(x) + 1 = τ(y) = τ(z). The type of a node of T is defined to be
the same as the type of its corresponding triangle. The following are easy to
observe.

(a) The root is of type 1.

(b) A node of type 1 has three children of type 2.

(c) A node of type 2 has one child of type 2 and two children of type 3.

(d) A node of type 3 has two children of type 3 and one child of type 1.

For a triangle �, define τ(�) to be the minimum of τ(u) for all u ∈ V (�).
Then it is not hard to observe that for every n� ∈ V (T ), τ(�) is one less than
the number of nodes of type 1 in the path from n� to the root of T . We call
the quantity τ(�) the auxiliary depth of n�, and define the auxiliary height
of a tree T , written ah(T ), to be the maximum auxiliary depth of its nodes.
Hence, the radius of a RAN equals one plus the auxiliary height of its �-tree.

Notice that instead of building T from the RAN G, one can think of the
random T as being generated in the following manner: start with a single node
as the root of T . So long as the number of nodes is less than 3n − 8, choose
a leaf v independently of previous choices and uniformly at random, and add
three leaves as children of v. Once the number of nodes becomes 3n−8, assign
types to the nodes subject to rules (a)–(d), using independent random choices
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to decide which of the children have the particular types. Henceforth, we will
forget about G and focus on finding the auxiliary height of a random tree T
generated in this manner.

A major difficulty in analyzing the auxiliary height of such a tree T is that
the subtrees rooted at the children of a node are heavily dependent, as the
total number of nodes is 3n− 8. To remedy this we consider another random
tree which has the desired independence and approximates T well enough for
our purposes. Denote by Exp(1) an exponential random variable with mean 1.

Let T̂ denote an infinite ternary tree whose nodes have types assigned using
rules (a)–(d) and are associated with independent Exp(1) random variables.
For the sake of convenience, each edge of the tree from a parent to a child
is labelled with the random variable associated with the parent, which can
be viewed as the age of the parent when the child is born. For every node
u ∈ V (T̂ ), its birth time is defined as the sum of the labels on the edges
connecting u to the root, and the birth time of the root is defined to be
zero. Given t ≥ 0, the tree T̂ t is the subtree induced by nodes whose birth
times are less than or equal to t, and is finite with probability one. By the
memorylessness of the exponential distribution, for any deterministic t ≥ 0,
the distribution of T̂ t conditional on T̂ t having exactly 3n − 8 nodes, is the
same as the distribution of T .

Using Broutin and Devroye [7, Proposition 2], it is easy to deduce the
desired result on the radius of a RAN after proving that a.a.s. the auxiliary
height of T̂ t is asymptotic to ct as t→∞.

Let k ≥ 3 be a fixed positive integer. We define two random infinite trees
Tk and Tk as follows. First, we regard T̂ as a tree generated by each node
giving birth to exactly three children with types assigned using (a)–(d), and
with an Exp(1) random variable used to label the edges to its children. The

tree Tk is obtained using the same generation rules as T̂ except that every
node of type 2 or 3, whose distance to its closest ancestor of type 1 is equal
to k, gives birth to no children. Given t ≥ 0, the (finite) tree T t

k is, as before,
the subtree of Tk induced by nodes whose birth times are less than or equal

to t. The tree Tk is also generated similarly to T̂ , except that for each node u
of type 2 (respectively, 3) in Tk whose distance to its closest ancestor of type
1 equals k, u has exactly three (respectively, four) children of type 1, and the
edges joining u to its children get label 0 instead of random Exp(1) labels. (In
an “evolving tree” interpretation, u immediately gives birth to three or four
children of type 1 and dies.) The (finite) tree T t

k is defined as before. The
following “sandwiching” lemma implies that we just need to analyze the trees

E. Ebrahimzadeh et al. / Electronic Notes in Discrete Mathematics 43 (2013) 355–365362



T t
k and T t

k.

Lemma 4.1 For every positive constant k ≥ 3, every t ≥ 0, and every g =
g(t), we have

P

[
ah

(
T t
k

)
≥ g

]
≤ P

[
ah

(
T̂ t

)
≥ g

]
≤ P

[
ah

(
T t
k

)
≥ g

]
.

Proof Sketch. The left inequality follows from the fact that the random
edge labels of T̂ and Tk can easily be coupled using a common sequence of
independent Exp(1) random variables in such a way that for every t ≥ 0, the

generated T t
k is always a subtree of the generated T̂ t. The right inequality is

proved by defining a sneaky coupling between the edge labels of T̂ and Tk,
which is omitted from this abstract. �

Proof of Theorem 1.3 (sketch). Asymptotics are with respect to t instead
of n. We define a random infinite tree Tk

′ as follows. The nodes of Tk
′ are the

type-1 nodes of Tk. Let V ′ denote the set of these nodes. For u, v ∈ V ′ such
that u is the closest type-1 ancestor of v in Tk, we have an edge joining u and
v in Tk

′, whose label equals the sum of the labels of the edges in the unique
(u, v)-path in Tk.

To apply [7, Theorem 1] we need the label of each edge to have the same
distribution. For this, we create a certain random rearrangement of Tk

′. In
this new tree, although the labels of edges from a node to its children are
dependent, the vector of labels of edges from a node to its children is indepen-
dent of all other edge labels, as required for [7, Theorem 1]. By this theorem,
a.a.s. the height of the subtree of Tk

′ induced by nodes whose birth times are
less than or equal to t is asymptotic to ρkt for a certain constant ρk. By the
construction of Tk

′, this height equals the auxiliary height of T t
k.

One can define an infinite bk-ary tree Tk
′
in a similar way. It follows

by a similar argument that a.a.s. the auxiliary height of T t
k is asymptotic

to ρkt, for a certain constant ρk. With some analysis, we can show that
limk→∞ ρk = limk→∞ ρk = c. It then follows from Lemma 4.1 that a.a.s. the

auxiliary height of T̂ t is asymptotic to ct, as required. �
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[16] Mahmoud, H. M., Pólya urn models and connections to random trees: A review,
Journal of the Iranian Statistical Society 2 (2003), pp. 53–114.

[17] Mungan, M., Comment on “apollonian networks: Simultaneously scale-free,

small world, euclidean, space filling, and with matching graphs”, Phys. Rev.
Lett. 106 (2011), p. 029802.

[18] Zhang, Z., F. Comellas, G. Fertin and L. Rong, High-dimensional Apollonian

networks, J. Phys. A 39 (2006), pp. 1811–1818.

[19] Zhou, T., G. Yan and B.-H. Wang, Maximal planar networks with large

clustering coefficient and power-law degree distribution, Phys. Rev. E 71 (2005),
p. 046141.

E. Ebrahimzadeh et al. / Electronic Notes in Discrete Mathematics 43 (2013) 355–365 365


	Introduction
	Upper bound for the longest paths
	Lower bounds for the longest paths
	Diameter
	References

